

Linux-Kit phyFLEX-i.MX6

Quickstart Instructions

Using Eclipse and the GNU Cross Development Toolchain

Note: The PHYTEC Linux-phyFLEX-i.MX6-Disc includes the electronic version of the English phyFLEX-i.MX6 Hardware Manual

Edition December 2012

Copyrighted products are not explicitly indicated in this manual. The absence of the trademark ($^{\text{IM}}$) and copyright ($^{\text{C}}$) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is considered to be entirely reliable. However, PHYTEC Messtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Messtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Messtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages that might result.

Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Messtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2012 PHYTEC Messtechnik GmbH, D-55129 Mainz.

Rights - including those of translation, reprint, broadcast, photo-mechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may be made without the explicit written consent from PHYTEC Messtechnik GmbH.

	EUROPE	NORTH AMERICA
Address:	PHYTEC Messtechnik GmbH Robert-Koch-Str. 39 D-55129 Mainz GERMANY	PHYTEC America LLC 203 Parfitt Way SW, Suite G100 Bainbridge Island, WA 98110 USA
Ordering Information:	+49 (6131) 9221-30 order@phytec.de	1 (800) 278-9913 sales@phytec.com
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com
Fax:	+49 (6131) 9221-33	1 (206) 780-9135
Web Site:	http://www.phytec.de http://www.phytec.eu	http://www.phytec.com

Editon December 2012

phyFLEX-i-MX6 Table of content

Table of Contents

1	Intr	oduction1	
	1.1	Rapid Development Kit Documentation1	
	1.2	Professional Support Packages Available 1	(1)
	1.3	Overview of these QuickStart Instructions	5 min
	1.4	Conventions used in this QuickStart	
	1.5	System Requirements	
	1.6 1.7	Contents of the Linux-phyFLEX-i.MX6-Kit-DVD	
2	Gett	ting started6	0
	2.1	Some notes before starting6	77
	2.2	First impressions of the Live DVD7	
	2.3	Starting the Hardware9	35 min
	2.4	Copying an Example to the Target	
		2.4.1Copying a Program to the Target	
		2.4.2Using Telnet to execute a Program on the Target 16	
	٥.	2.4.3Using SSH to execute a Program on the Target 16	
	2.5	Advanced Information	
		2.5.1Copying a Program to the Target with the command line 19 2.5.2Executing a program on the target	
		2.5.3Executing a program directly on the target using SSH 19	
3	Wor	king with Eclipse20	
		Programming in the C/C++ perspective	
		3.1.1Handle with the demo project	
		3.1.2Creating a New Project	35 min
		3.1.3Changing the Demo Application 37	
		3.1.4Starting a Program out of Eclipse on the Target 40	
	3.2	Programming in the Qt C++ perspective	
		3.2.1Importing the demo application	
		3.2.2Handle with the demo application 50	
4	Deb	ugging an example project52	
	4.1	Starting the GDB server on the target	[2]
	4.2	Configuring and starting the debugger in Eclipse 53	
	4.3	Setting a Breakpoint	35 min
	4.4	Stepping and Watching Variable Contents	
	4.5	Stepping and Watching Variable Contents	
	4.6	Using the Memory Monitor65	

Table of content phyFLEX-i-MX6

5	Sun	ımary	68
6	Inst	talling Linux on the phyFLEX-i.MX6	69
		Configure Barebox Environments Variables	
	6.2	Restoring the Barebox Default Configuration	72
	6.3	Update the Bootloader / Root Filesystem	72
		Writing the Kernel into Flash	
7	Seti	up your own Linux-Host-PC	74
	7.1	Essential settings	74
		7.1.1Installation of software packages	
		7.1.2Setup of toolchain, PTXdist and BSP	
		7.1.3Setting up Eclipse and integrate plug ins	
		7.1.4Setting up a TFTP server	
	7.2	Optional settings	
8	Inst	tallation of the modified Ubuntu	80

phyFLEX-i-MX6 Introduction

1 Introduction

5 min

In this QuickStart Instructions Manual you will find general information about the PHYTEC phyFLEX-i.MX6-Kit and instructions how to start-up with the phyFLEX-i.MX6. You will learn how to...

- ... connect to the target in different ways
- ... working with Eclipse and running example programs on the target with the GNU GCC
 C/C++ Cross-Development Toolchain
- ... and much more good to know things

This first Chapter gives a short introduction about the PHYTEC phyFLEX-i.MX6-Kit and it's Quickstart. Also you will find general requirements and information to successfully pass the Quickstart.

Please refer to the phyFLEX-i.MX6 Hardware Manual® for specific information on such board-level features as jumper configuration, memory mapping and pin layout. At this point we also mention the BSP-Quickstart phyFLEX-i.MX6 manual in which you will find more detailed instructions on how to handle the phyFLEX-i.MX6

1.1 Rapid Development Kit Documentation

This "Rapid Development Kit" (RDK) includes the following electronic documentation on the enclosed "PHYTEC Linux-phyFLEX-i.MX6-Disc" under *PHYTEC/Documentations* or if you are in the Live Environment under */opt/PHYTEC_Tools/Documentation*.

- The PHYTEC phyFLEX-i.MX6 Hardware Manual
- These Quickstart Instructions

1.2 Professional Support Packages Available

If you have any questions concerning installation and setup, you are welcome to contact our support department.

For more in-depth questions, we offer a variety of custom-tailored packages with different support options (e-mail, phone, direct contact to the developer) and different reaction times.

Please contact our sales team to discuss the appropriate support option if professional support beyond installation and setup is important for you.

Introduction phyFLEX-i-MX6

For more information please refer to the following sources:

http://www.phytec.de http://www.phytec.eu support@phytec.de

Also more contact information can be found on page 2.

1.3 Overview of these QuickStart Instructions

This QuickStart gives you an overview of the phyFLEX-i.MX6. It's content ranges from the first startup, to building your own kernel and file system, to the point of building your own program with Eclipse. This Quickstart is structured as follows:

- 1. The "Getting Started" section describes the basics such as configure your host platform and starting the phyFLEX-i.MX6 platform.
- 2. The "Programming with Eclipse" section explains how to modify an example application, create and build a new project, and copy programs to the phyFLEX-i.MX6 using Eclipse with the C/C++ and QT-Plug in.
- 3. The "Debugging" section provides information on how to debug an application with the Eclipse debugging interface.
- 4. In the Appendix you will find an overview how to install the Live DVD on your system and how to setup your own Linux-Host-PC if you don't want to use our Live DVD.

1.4 Conventions used in this QuickStart

The following is a list of the typographical conventions used in this book:

italic	Used for file and directory names, program and command names, command-line options, menu items, URLs, and other terms that correspond to the terms on your desktop
Bold	Used in examples to show commands or other text that should be typed literally by the user.

phyFLEX-i-MX6 Introduction

Pay special attention to notes set apart from the text with the following icons:

	At this icon you might leave the path of this QuickStart.
Teams of the second	
	This is a warning. It helps you to avoid annoying problems.
	You can find useful supplementary information about the topic.
200x	
	At the beginning of each chapter you can find information about the time required to read the following chapter.
	You have successfully completed an important part of this QuickStart.
4	
	You can find information to solve problems.

Introduction phyFLEX-i-MX6

1.5 System Requirements

The following items will be needed to complete this Quickstart successfully:

- The PHYTEC phyFLEX-i.MX6 (i.MX6)
- The PHYTEC Development Board with the included DB-9 serial cable, Ethernet cross-over cable and AC adapter supplying 12 VDC (min. 2 A)
- PHYTEC Linux-phyFLEX-i.MX6-Kit-DVD
- An IBM-compatible host-PC (586 or higher) with 512 MB RAM (or more)
- DVD-drive
- Recommended free disk space: 20 GB if you want to install Ubuntu with our customization.

1.6 Contents of the Linux-phyFLEX-i.MX6-Kit-DVD

There is a bootable modified *Ubuntu* distribution on the Linux-phyFLEX-i.MX6-Kit-DVD. You can run *Ubuntu* directly from your DVD without affecting your current system. Therefore you have the possibility to work with this Quickstart without installing the operating system. To allow a fast and smooth procedure some modifications are applied to the original Ubuntu. A short overview about these modifications:

- Design customization
- · Installation of required software to work with this Quickstart
- Preparation of the Toolchain for cross-compilation
- Integration of the PHYTEC Board Support Package

You can find a detailed list in the appendix "Setup your own Linux-Host-PC".

phyFLEX-i-MX6 Introduction

1.7 About the Ubuntu distribution

Ubuntu - which you can find on the Linux-phyFLEX-i.MX6-Kit-DVD - is a free and open source operating system based on *Debian Linux*. Basically it is designed for desktop use. Web statistics suggest that *Ubuntu* is one of the most popular operating systems in the Linux desktop environment.

The *Ubuntu* release which we deliver is 10.04.3 and was released on 22 July 2011. *Ubuntu* 10.04 code name "*Lucid Lynx*" is designated as a **Long Term Support (LTS)** release and the first stable release was on 29 April 2010. LTS means that it will be supported and updated for three years.

Our *Ubuntu* version comes with *GNOME* as desktop environment, *dpkg* as package management system, the update method is based on *APT* (*Advanced Packaging Tool*) and the user space uses *GNU*.

2 Getting started

35 min

In this chapter we establish a basis to go through the steps in this Quickstart. First you will learn more about the Ubuntu Live DVD and its handling. Then you will be starting the phyFLEX-i.MX6 platform for the first time.

2.1 Some notes before starting

As mentioned in the beginning of this Quickstart the Linux-phyFLEX-i.MX6-Kit-DVD is an Ubuntu Live DVD with some modifications. This means that you have the freedom to choose if you want to first test the platform under the live-environment or if you will directly install Ubuntu on your hard drive. In the following you can find a list of advantages and disadvantages from the perpective of the live-environment to simplify your decision:

Live-environment vs. Installation	
Pro	Contra
starting directly without preparation	slower performance
• if anything goes wrong, your system is clean after a reset	after a restart all changes are lostdepending on the size of your RAM you
testing without affecting your current system	can only do a limited number of chan- ges
all Quickstart steps can be done	not intended for productive use

Of course more involved users can use their own - perhaps existing - distribution. In the appendix "Setup your own Linux-Host-PC" you will find a list of modifications which have been made to Ubuntu. These modifications can be done specifically to your system but we don't ensure support if you have any system specific problems. Also you can find the essential programs on our DVD under the directory /PHYTEC

2.2 First impressions of the Live DVD

After reading the general notes it's now time for you to start activity. Regardless of which choice you made it is necessary to change the boot priority in the *BIOS*. Your system should first access to the DVD-drive and check if there is a bootable device. We are starting the Live DVD by inserting the Linux-phyFLEX-i.MX6-Kit-DVD and boot from the DVD-drive.

When the system has completely booted the following screen appears:

In this window you can choose your desired language and you can also choose between installing the operating system or only testing the system. In the following we assume that you are working with the live-environment.

If you want to install our Live DVD now you will find the relevant instructions in the appendix "Install the Live DVD on your host". After having completed this you can go back to this position and continue your work.

After clicking on "Try Ubuntu 10.04.3" the live-environment is loaded and the system welcomes you with the following desktop view.

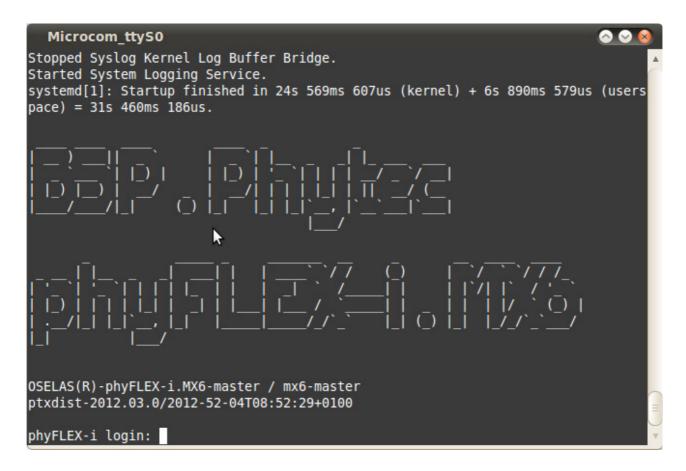
The operating system is booted and in the next chapter we will focus on your first contact with the target.

2.3 Starting the Hardware

In this section you will learn how to connect your host PC to the target. The connection will be done using a cross-over Ethernet cable and a serial one-to-one cable. You will start Linux from the flash memory on the target and you will be able to log in with the serial communication program *Microcom* as well as via a *telnet* session using a peer-to-peer network connection.

By default every input and output is transmitted over the serial connection you built up earlier.

 Connect the serial cable to the UART1 (connector X3, TOP) port on the target and the first serial interface on your host.


Be sure to use the one-to-one serial cable included in this Rapid Development Kit.

 Connect the cross-over Ethernet cable to the Ethernet connector on the target and to the appropriate network card of your host.

- Click the *Microcom_ttySO* icon on your desktop, if you have connected the target to your serial interface on your host. If you have connected the serial cable with an USB dongle to your PC click the Microcom_ttyUSBO icon on your deskop.
- Connect the AC adapter to the power supply connector PWR (12V) on your board

After connecting the board to the power supply, the target starts booting. When the target has finished loading the system, you should see a screen similar to the following:

- Type root to log in
- After you have successfully logged in, you can close Microcom

If you don't see the Barebox and Linux starting and don't get a login prompt, you probably have a kit with Windows CE pre-installed. Please refer to the chapter "Installing Linux on the phyFLEX-i.MX6" for instructions on how to install Linux in such a case.

When the target is connected to the power supply, the boot loader *Barebox* is first loaded from the flash memory. Then the boot loader is uncompressing and booting the Linux kernel from the flash. Then the kernel will install the root file system, which is also located in the target's flash.

If you don't see any output in the *Microcom* window, check the serial connection between the target and your host.

If you have more than one serial port try the others. By default *Microcom* uses /dev/ttySO. If you want to use another port you can click on the *Microcom* Icon at your desktop with your right mouse button and select *Properties*. A window opens in which you can change the Properties of the *Microcom* Icon. Click in the *Command* field and search for "-p/dev/ttySO". Change it for example to /dev/ttyS1 and so on if you have more than one serial port. If you are connecting the board via RS232 to USB change it to /dev/ttyUSBO. The -p Parameter defines the port which *Microcom* will use.

If the *Microcom* window does not open, one reason could be a *lock*-file which was created when Microcom was not correctly terminated. Delete this file by opening a terminal and type:

rm /var/lock/LCK..*

After starting the target and see the serial outputs in *Microcom* we want to connect to the target via Ethernet.

Before we can start connecting to the target we must configure the IP address of our host.

We recommend that the host PC is not connected to any other network. The target and host will be connected with a cross-over cable via a peer-to-peer connection. If your host is part of a company's network, we recommend disconnecting your host from such a network.

- In the GNOME-Panel at the top of the desktop click on *System* ▶ *Preferences* ▶ *Network Connections*
- Choose the right wired network if more than one is present and click on Edit
- Select the IPv4 Settings register and select Manual in the Method drop-down box
- Click on Add and enter as IP address 192.168.3.10 and subnet mask 255.255.255.0
- At last click on Apply to save this connection and close the windows

Now we are ready to test the network connection.

• Click the *Telnet for Target* icon on your desktop

A new window with a connection to the target opens.

If you can see the user login in the opened window, the network was configured correctly.

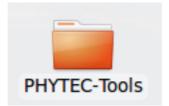
Close the window

Troubleshooting:

If you don't see the user login, check the Ethernet connection between the target and the host. If you have installed more than one network card on your host, be sure to connect the cable to the network card which you have configured with the IP address 192.168.3.10.

If you do not see the login, you may not have set up the right IP address for your host. You can check the settings of your network card by clicking on *System Preferences Network Connections*. Another common reason is that the MAC address of the target isn't set correctly. You can check this by opening *Microcom* if it is not already started and reset the target. Press any key to stop autoboot and type:

edit /env/config


Search for a line beginning with "eth0.ethaddr=". After finding this entry compare it to the MAC address which you find on the target. If you don't find this line, insert it manually, followed by the MAC address which you find on the target. For example eth0.ethad-dr=00:50:C1:D1:F1:E1. After you have made the change quit the program by pressing CTRL+D, type save and reset the target.

You have successfully set up all configurations to access your phyFLEX-i.MX6 from your host.

2.4 Copying an Example to the Target

In this section you will learn how to copy an example program to the target using the FTP protocol with the *Nautilus* file browser. After that you will execute an example on the target. At the end of this passage you can find some information on how to copy and execute a file on the target using the command line.

2.4.1 Copying a Program to the Target

First click the PHYTEC-Tools icon on your GNOME desktop

A new window with the contents from the PHYTEC_Tools directory opens.

• Click the FTP for Target icon on your desktop

A window with an FTP session with the target opens. User is *root* and password is empty. Now you have two windows opened, one for the target and one for the host. You can use these two windows to copy files per "drag and drop" from the host to the target (and vice versa).

- Select the window that lists the HelloWorld program on your hard disk
- Click the HelloWorld program with the right mouse button and choose Copy
- Click with the right mouse button on the FTP session with the target and choose *Insert*
- Close the two windows

2.4.2 Using Telnet to execute a Program on the Target

Click the Telnet for Target icon on your GNOME desktop

- Enter root as login and press Enter
- Enter ./HelloWorld and press Enter

The program starts and you should see the following output:

Welcome to the World of the phyFLEX-i.MX6!

2.4.3 Using SSH to execute a Program on the Target

SSH can be used if you want to execute a program directly from the host on the target. Later, this will be used to execute programs out of Eclipse on the target. Before you can start programs out of Eclipse, you have to log in to the target via SSH from the command line for the first time. This is necessary to add the RSA public key of the target to the list of known hosts.

When the host connects to the target, the file~/.ssh/known_hosts (on the host) is consulted when using RSA host authentication to check the public key of the target. The key must be listed in this file to be accepted. When the host connects to the target for the first time, you will be asked to store the target's RSA public key to your ~/.ssh/known_hosts. If you agree to do this, then the host will be able to connect to the target without entering a password.

Click the SSH for Target icon on the desktop

A new window opens.

The authenticity of host '192,168,3,11 (192,168,3,11)' can't be established. RSA key fingerprint is 28;2d;35;dd;47;0d;f3;a3;42;c1;37;ab;95;63;77;c0. Are you sure you want to continue connecting (yes/no)? yes Warning: Permanently added '192,168,3,11' (RSA) to the list of known hosts. root@phyCARD:" ■

In this window you can see that the authenticity of the phyFLEX-i.MX6 can't be established. This is normal if you want to create an SSH connection for the first time.

• Enter **yes** and press **Enter** to continue. The RSA public key of the target will be permanently added to the list of the known hosts.

Troubleshooting:

If an error occurs and you can't see the *root@phyFLEX*:~> prompt, open a terminal window and enter the following command:

rm ~/.ssh/known_hosts

Try to log in again by entering:

ssh root@192.168.3.11

Enter **yes** to add the target to the list of known hosts.

Now you should see the target's prompt.

We expect that you did not change the SSH configuration file on your host. If you have changed this file, the authentication may not work.

Now you are logged in and you can execute programs on the target.

• Type ./HelloWorld to start the program you had copied to the phyFLEX-i.MX6 before

The program starts and you should see the following output:

Welcome to the World of the phyFLEX-i.MX6!

Close the SSH window

You have successfully copied and executed an example application on the target.

2.5 Advanced Information

2.5.1 Copying a Program to the Target with the command line

- Open a new terminal window
- Change to /opt/PHYTEC_Tools/: cd /opt/PHYTEC_Tools/
- Copy the application to the target by typing: scp HelloWorld root@192.168.3.11:/home/
 Be sure to enter a slash followed by a space after the IP address

2.5.2 Executing a program on the target

- Open a Telnet session to the target: telnet 192.168.3.11
- Type root and press Enter
- Type ./HelloWorld to start the application
- Type exit

2.5.3 Executing a program directly on the target using SSH

 To start the program, type: ssh root@192.168.3.11./HelloWorld After the program has finished, SSH will log out automatically

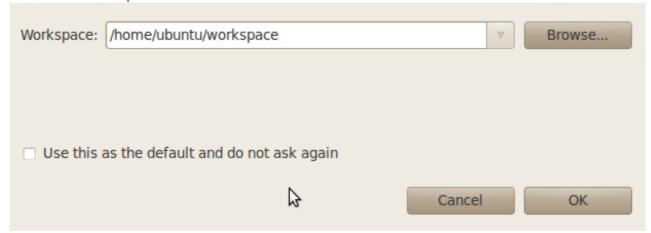
3 Working with Eclipse

35 min

With the help of example projects, we will teach you how to work with eclipse during this chapter. First we take a look on the C programming language. At the end of this chapter we explain how to execute your written programs automatically when booting the target.

3.1 Programming in the C/C++ perspective

We are starting with the C/C++ workbench. Therefor you will import an existing Eclipse project into your workspace. The imported example project will be compiled with the cross compiler. After compiling the project, you will copy and execute the newly created program on the target.

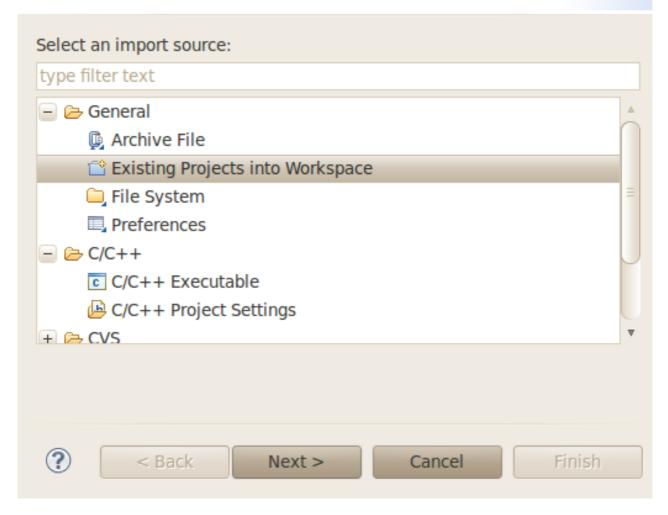

3.1.1 Handle with the demo project

• Click the *Eclipse* icon to start the application. You can find this icon on your desktop.

Select a workspace

Eclipse SDK stores your projects in a folder called a workspace. Choose a workspace folder to use for this session.

- Confirm the workspace directory with OK
- Close the "Welcome to Eclipse" screen by clicking on the "Go to the workbench" button

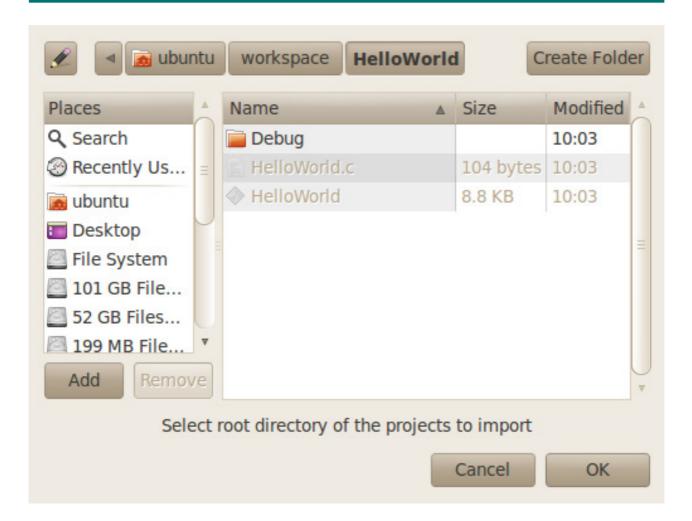


• Select File ► Import from the menu bar

Select

Create new projects from an archive file or directory.

- Select Existing Projects into Workspace
- Click Next


Import Projects

Select a directory to search for existing Eclipse projects.

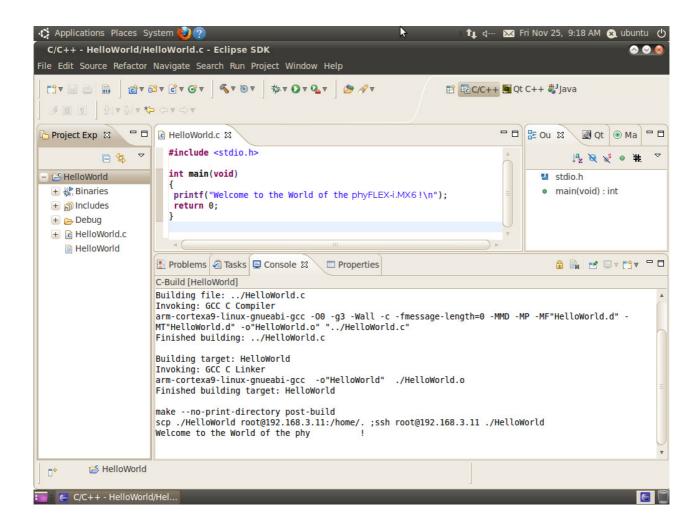
Select root directory:	Browse
Select archive file:	Browse
Projects:	
	Select All
	Deselect All
	Refresh
 Copy projects into workspace Working sets Add project to working sets Working sets: 	Select
? < Back Next > Cancel	Finish

• Select *Browse*

- Double-click the HelloWorld directory under /home/ubuntu/workspace/
- Click OK

Import Projects

Select a directory to search for existing Eclipse projects.



Select root directory: [/home/ubuntu/workspace/HelloWi	Browse
Select archive file:	Browse
Projects:	
✓ HelloWorld (/home/ubuntu/workspace/HelloWorld)	Select All
	Deselect All
	Refresh
Copy projects into workspace	
Working sets Add project to working sets	
Working sets:	Select
	ß
? Cancel	Finish

• Select Finish to import the project

The *HelloWorld* program will be compiled and the *HelloWorld* executable is built for the target. Then the *HelloWorld* file is copied to the target using *secure copy*. After the file has been copied to the target, the program is executed on the target using *SSH*.

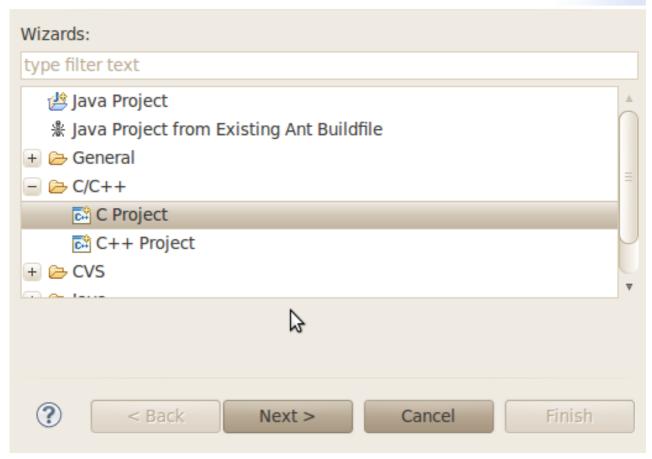
You will see the following content in the Console window:

If the project is not built automatically, you will have to check *Project* ► *Build automatically* from the menu bar. To build it new select *Project* ► *Clean...*.

You have successfully passed the first steps with the Eclipse IDE. You are now able to import existing projects into the Eclipse workspace. You can compile an existing project and execute the program on the target.

3.1.2 Creating a New Project

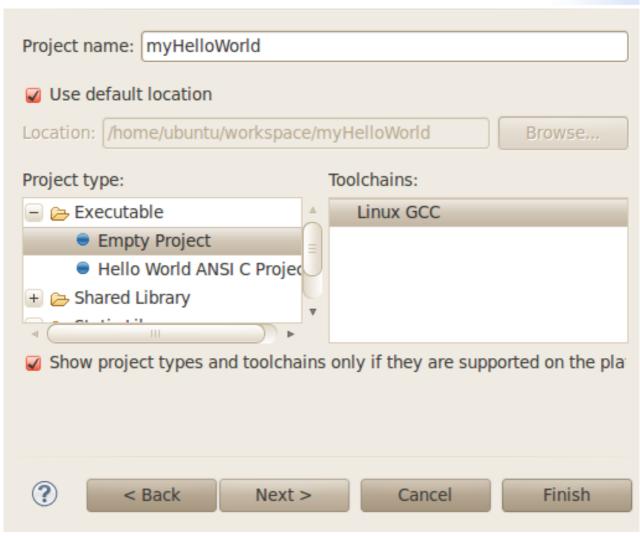
In this section you will learn how to create a new project with Eclipse and how to configure the project for use with the GNU C/C++ cross development toolchain.


- Open Eclipse if it isn't already opened
- Select *File* ► *New* ► *Project* from the menu bar

A new dialog opens.

Select a wizard

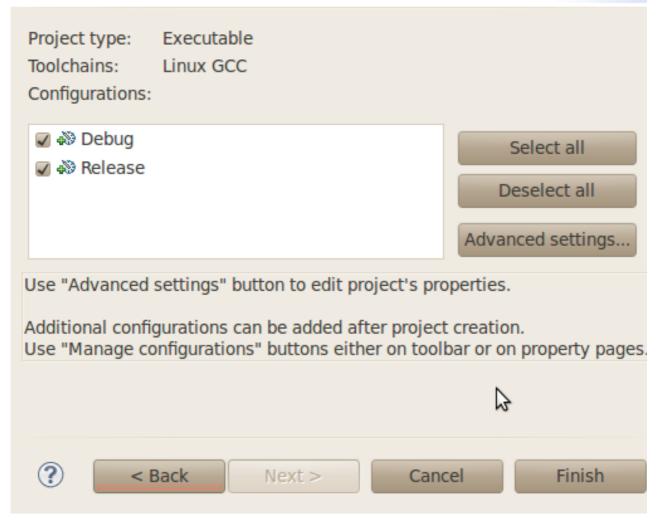
Create a new C project



Select C Project and click Next

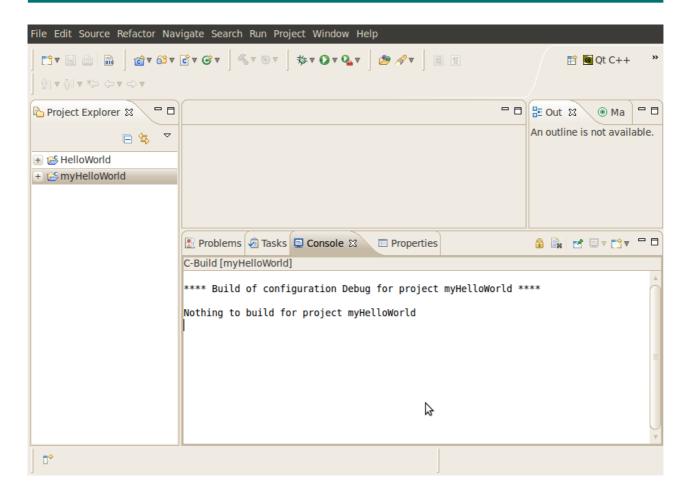
C Project

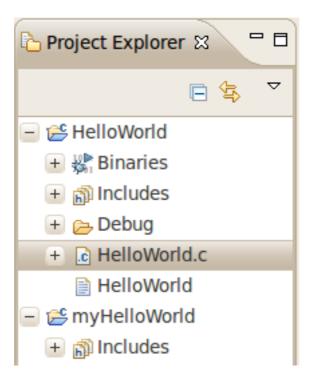
Create C project of selected type



• Enter the project name myHelloWorld and click Next

Select Configurations


Select platforms and configurations you wish to deploy on

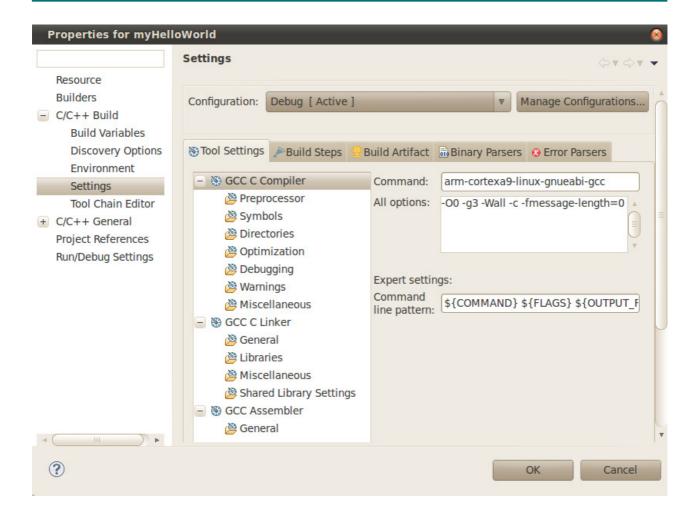


Click Finish

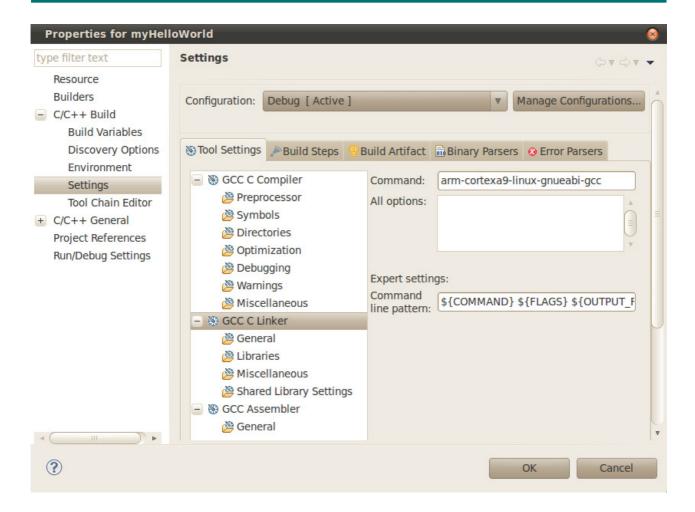
You will see the C/C++ IDE with the *myHelloWorld* project.

- Double-Click the HelloWorld project which we have worked with previously
- Right-click on *HelloWorld.c* in the *HelloWorld* project
- Select Copy

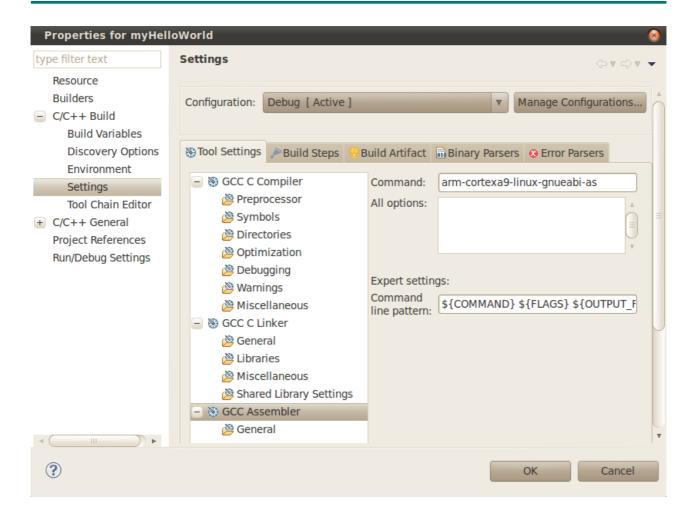
- Select the myHelloWorld project
- Right-click the myHelloWorld project
- Select Paste
- Double-click on HelloWorld.c in the myHelloWorld project

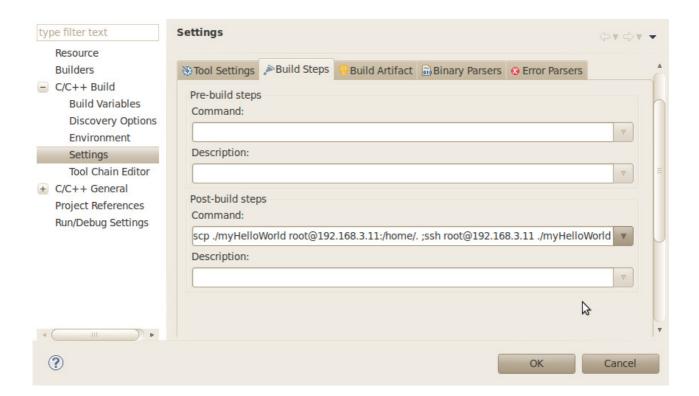

If *Build Automatically* from the *Project* menu is selected, the *HelloWorld* application will now be compiled and created with the standard GCC C/C++ compiler suitable for your host machine. You will find the executable file, which can only run on your host system, in the *workspace/myHelloWorld/Debug* directory.

To compile your project for the phyFLEX-i.MX6 instead, you will have to use the GNU C/C++ cross compiler.

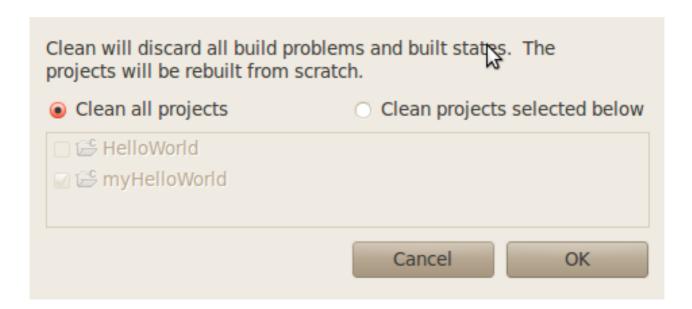

Right-click the myHelloWorld project and choose Properties

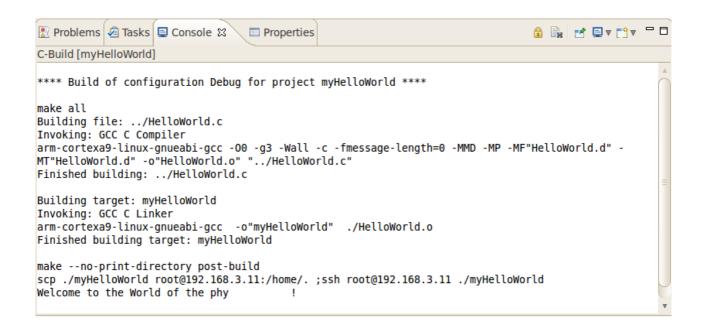
The Properties dialog appears.


- Select C/C++ Build
- Enter arm-cortexa9-linux-gnueabi-gcc into the Command input field


- Select GCC C Linker
- Enter arm-cortexa9-linux-gnueabi-gcc into the Command input field

- Select GCC Assembler
- In the Command input field, change the default as to arm-cortexa9-linuxgnueabi-as
- Click Apply


- Select the Build Steps tab
- Enter the following command in the Post-build steps Command input field:
 scp ./myHelloWorld root@192.168.3.11:/home/.;ssh root@192.168.3.11 ./myHelloWorld



Be sure to enter the semicolon before the ssh command. Be sure that the file *myHelloWorld* on the target will have execution rights, because otherwise *ssh* will fail.

- Click Apply
- Click OK
- Select Project ➤ Clean from the menu bar

- Confirm with OK.
 The project will be rebuilt.
- Select the Console tab.
 If no errors occur while building the project, you will see the following output:

You have successfully created your first own project with the Eclipse IDE. You have configured the project to create an application for your target platform.

3.1.3 Changing the Demo Application

Now we will extend the *myHelloWorld* application. The extended *myHelloWorld* application will write an output to the first serial interface as well as to the standard output.

- Open Eclipse if it is not opened yet
- Double-click HelloWorld.c in the myHelloWorld project
- First include the following two additional header files: #include <unistd.h> #include <fcntl.h>
- Then add the function write_tty(), which writes n bytes to the first serial interface (which, on the phyFLEX-i.MX6, is connected to the system console /dev/console): void write_tty (char *buffer, int count) { int out; out = open ("/dev/console", O_RDWR); write(out, buffer, count); close(out); }
- Enter the following tow lines in the main() function to declare the buffer and call the write_tty() function.

```
char buf [] = { "Welcome to the World of the phyFLEX-i.MX6! (serial)\n" }; write_tty(buf, sizeof (buf) - 1);
```

In the next screenshot you can see the complete program.

```
- -
□ HelloWorld.c ≅
  #include <stdio.h>
  #include <unistd.h>
  #include <fcntl.h>
 void write tty(char *buffer, int count)
  {
      int out;
      out = open("/dev/console", 0 RDWR);
      write(out, buffer, count);
      close(out);
  }
  int main(void)
      printf("Welcome to the World of the phyFLEX-i.MX6!\n");
      char buf[] = {"Welcome to the World of the phyFLEX-i.MX6! (serial)\n"}
      write tty(buf, sizeof(buf) -1);
      return 0;
 }
```

Save your program after changing the code.
 The application will be compiled, built, copied to the target and executed.

```
🛃 Problems 💋 Tasks 📮 Console 🛭
                                 Properties
C-Build [myHelloWorld]
**** Build of configuration Debug for project myHelloWorld ****
make all
Building file: ../HelloWorld.c
Invoking: GCC C Compiler
arm-cortexa9-linux-gnueabi-gcc -00 -g3 -Wall -c -fmessage-length=0 -MMD -MP -MF"HelloWorld.d" -
MT"HelloWorld.d" -o"HelloWorld.o" "../HelloWorld.c"
Finished building: ../HelloWorld.c
Building target: myHelloWorld
Invoking: GCC C Linker
arm-cortexa9-linux-gnueabi-gcc -o"myHelloWorld" ./HelloWorld.o
Finished building target: myHelloWorld
make --no-print-directory post-build
scp ./myHelloWorld root@192.168.3.11:/home/. ;ssh root@192.168.3.11 ./myHelloWorld
Welcome to the World of the phy
```

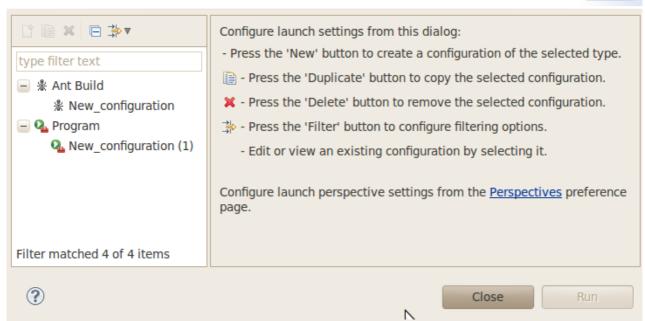
- Click the *Microcom* icon on the desktop
- If you are not logged in, enter root and press Enter
- Type ./myHelloWorld to start the application
- You will see the following output:
 Welcome to the World of the phyFLEX-i.MX6! (serial)
 Welcome to the World of the phyFLEX-i.MX6!
- Close Microcom

When you start the application via an SSH session, you only see one output line. When you execute the program with Microcom, you see two output lines.

The first line is a direct output on the serial interface. You can't see this line in a SSH session, because you are connected over a TCP/IP connection to the target. With Microcom, however, you have direct access to the serial interface, so you can also see the line that is written to the serial console.

In this section you have changed an existing application. You also learned how to access the serial interface. First you called the function open() on the device /dev/console. The return value of this function was a file descriptor. With the file descriptor you called the function write() to send n bytes to the device /dev/console. After that, the file descriptor was closed with the function close().

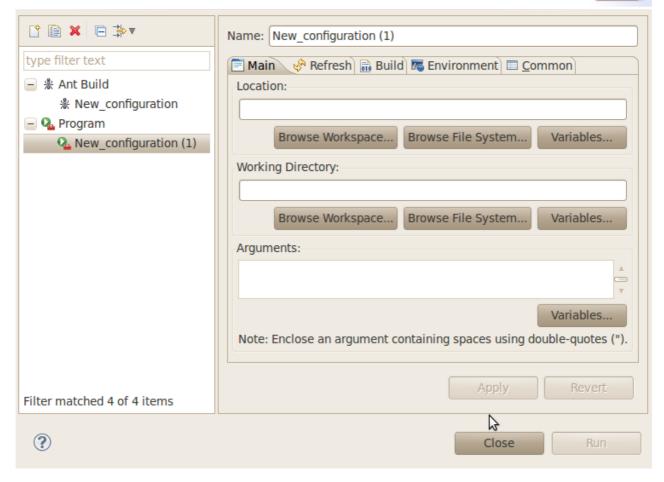
This procedure is in principle quite typical for Linux, because Linux treats everything like a file.


3.1.4 Starting a Program out of Eclipse on the Target

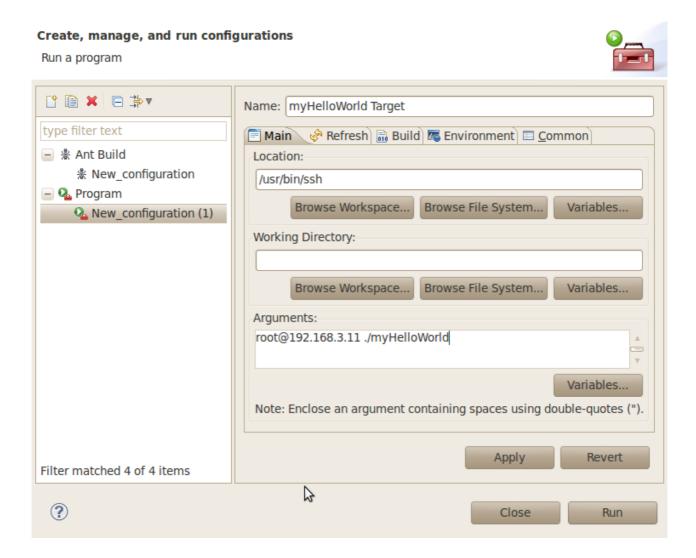
After compiling a project in Eclipse, the program is copied to the target and directly executed. A program can also be executed on the target without compiling a project. In the following section you will learn how to start a program on the target as an external tool.

Select Run ➤ External Tools ➤ External Tools Configurations from the menu bar

Create, manage, and run configurations



Under Program select New_configuration (1)


Create, manage, and run configurations

Please specify the location of the external tool you would like to configure.

- In the Name input field, enter: myHelloWorld Target
- Enter /usr/bin/ssh in the Location input field
- Enter root@192.168.3.11 ./myHelloWorld into the Arguments field
- Select Apply

Select Run

If you want to execute the program the next time, you can use the Run External Programs

button from the menu bar.

You have successfully create your own Eclipse project and you learned how to execute a program at the target.

3.2 Programming in the Qt C++ perspective

In this section our attention goes to the Qt framework, which gives us tools to develop graphical user interfaces. With the help of an example project we will give you a short introduction of how to work with Qt.

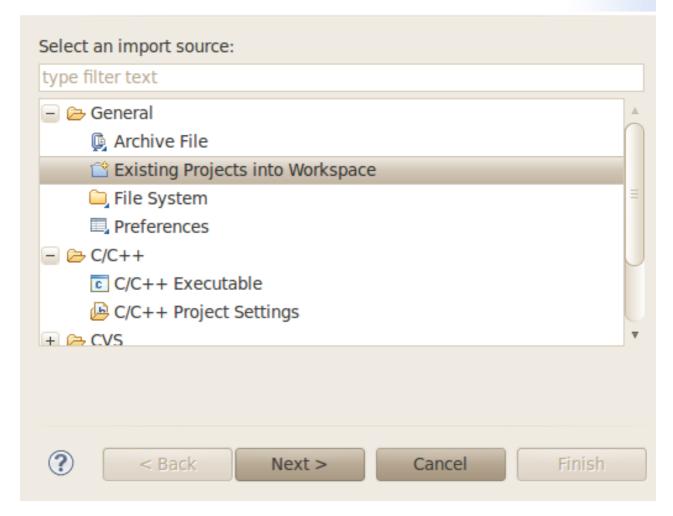

3.2.1 Importing the demo application


• Click the Eclipse icon to start the application, if it isn't already open. You can find this icon on your desktop.

Select a workspace

Eclipse SDK stores your projects in a folder called a workspace. Choose a workspace folder to use for this session.

• Now we switch to the Qt C++ perspective. Click Window ▶ Open Perspective ▶ Other.



- A dialog opens. Choose Qt C++ and click **OK**.
- Now we can import the example project. Select File ► Import from the menu bar.

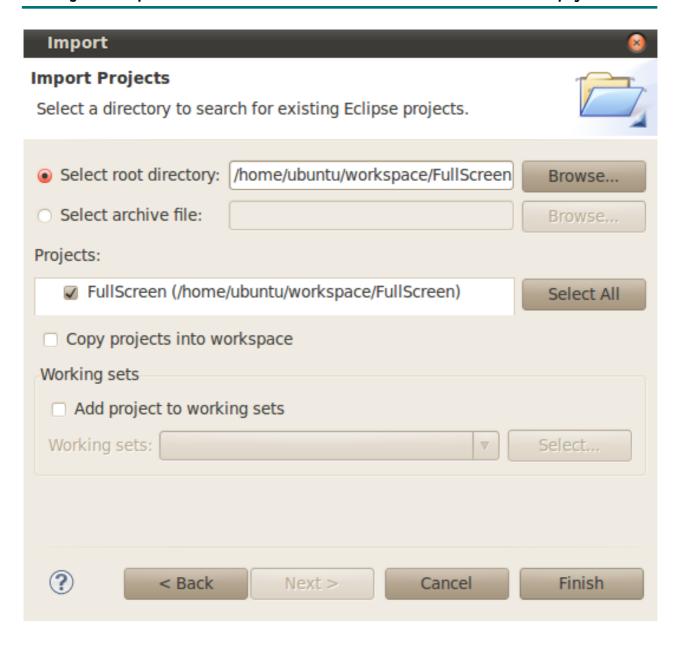
Select

Create new projects from an archive file or directory.

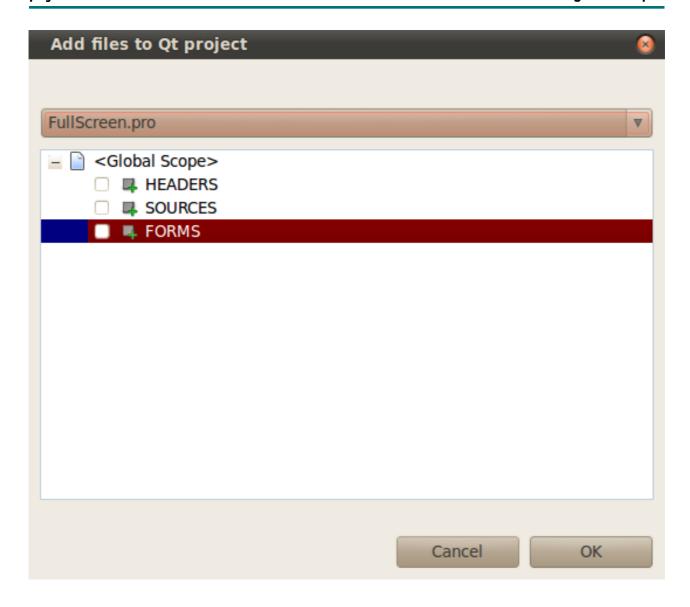
- Select Existing Projects into Workspace
- Click Next

Import Projects

Select a directory to search for existing Eclipse projects.



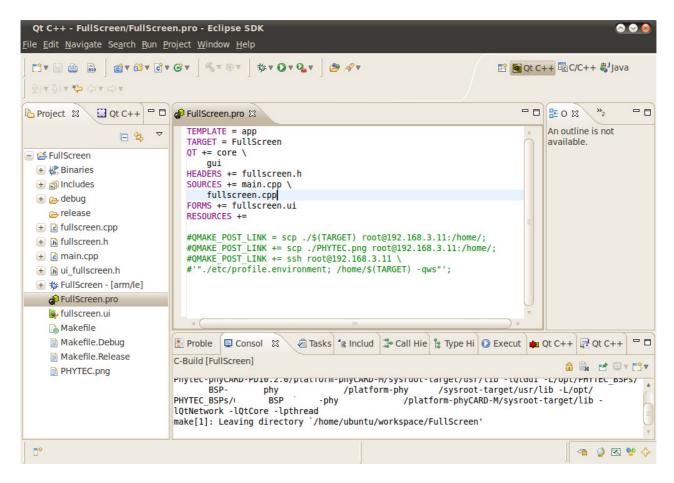
Select root directory:	Browse
Select archive file:	Browse
Projects:	
	Select All
	Deselect All
	Refresh
Copy projects into workspace	
Working sets Add project to working sets	
Working sets: ▼	Select
? < Back Next > Cancel	Finish


- Select *Browse*
- Double-click the FullScreen directory under /home/ubuntu/workspace/

Click OK

- Select *Finish* to import the project
- On the next window deselect HEADERS and FORMS and click OK

The *FullScreen* program will be compiled and you can find the outputs on the console. After the compilation is finished successfully the *FullScreen* executable for the target is built and can be found under */home/ubuntu/workspace/FullScreen*.



If the project is not built automatically, you will have to check Project ► Build automatically in the menu bar. To rebuild select Project ► Clean....

3.2.2 Handle with the demo application

If you want the project to be automatically copied to the target and executed we must make some changes in the *FullScreen.pro* file.

• Double-click the FullScreen.pro to open it

In this file you will find four uncommented rows.

- Remove the commentar signs (#) to enable the three QMAKE_POST_LINK tags.
 With this tag you can add post-build commands. In our case we copy the compiled
 project and the picture to the target and connect via ssh, set the environment and
 execute the application.
- Select *Project* ➤ *Clean...*
- Confirm the Clean dialog with OK

After the FullScreen program is compiled the QMAKE_POST_LINK is called. The *FullScreen* file is copied to the target using secure copy and executed using *SSH*.

You will see the following content in the Console window:

```
    Proble  ☐ Consol 
    Consol 

√a Tasks 
√a Includ 
√a Call Hi 
√a Type H 
√a Execut 

√a Qt C+

☐ Qt C+

                                                                                                                                                                                                                    Progre
C-Build [FullScreen]
                                                                                                                                                                                                             ~~| DirectFB 1.4.3 |~
                   (c) 2001-2009 The world wide DirectFB Open Source Community
                   (c) 2000-2004 Convergence (integrated media) GmbH
(*) DirectFB/Core: Single Application Core. (2010-11-26 16:03)
(*) Direct/Memcpy: Using libc memcpy()
(*) Direct/Thread: Started 'VT Switcher' (-1) [CRITICAL OTHER/OTHER 0/0] <8388608>...
(*) Direct/Thread: Started 'VT Flusher' (-1) [DEFAULT OTHER/OTHER 0/0] <8388608>...
(*) DirectFB/FBDev: Found 'DISP3 BG' (ID 0) with frame buffer at 0x87a00000, 1200k (MMIO
0x00000000, 0k)
(*) Direct/Thread: Started 'Linux Input' (-1) [INPUT OTHER/OTHER 0/0] <8388608>...
(*) DirectFB/Input: wm97xx touchscreen 0.1 (directfb.org)
(*) Direct/Thread: Started 'Keyboard Input' (-1) [INPUT OTHER/OTHER 0/0] <8388608>...
(*) DirectFB/Input: Keyboard 0.9 (directfb.org)
(*) DirectFB/Graphics: Generic Software Rasterizer 0.6 (directfb.org)
(*) DirectFB/Core/WM: Default 0.3 (directfb.org)
 (!!!) *** WARNING [letting unprivileged IDirectFBDisplayLayer::GetSurface() call pass until
cooperative level handling is finished] *** [idirectfbdisplaylayer.c:174 in
IDirectFBDisplayLayer_GetSurface()]
Cannot open keyboard input device '/dev/input/event1': No such file or directory
(*) Direct/Interface: Loaded 'PNG' implementation of 'IDirectFBImageProvider'.
                                                                                                           Building workspace: (5%)
                                                                                                                                                                                                                   🔏 🥥 💌 💖
```

On the display of the target the project is started and you can change between windowed and fullscreen mode by clicking the button.

You have successfully imported and built a Qt project in Eclipse. You've also learned to run your application on the target.

4 Debugging an example project

35 min

In this chapter you will learn using the GNU debugger GDB on the host for remote debugging in conjunction with the GDB server on the target. GDB is the symbolic debugger of the GNU project and is arguably the most important debugging tool for any Linux system.

First you will start the GDB server on the target. Then you will configure the Eclipse platform and start the GNU debugger out of Eclipse using the Debug view.

The CDT extends the standard Eclipse Debug view with functions for debugging C/C++ code. The Debug view allows you to manage the debugging and running of a program in the workbench. Using the Debug view you will be able to set breakpoints/watchpoints in the code and trace variables and registers. The Debug view displays the stack frame for the threads of each target you are debugging. Each thread in your program appears as a node in the tree, and the Debug view displays the process for each target you are running.

The GDB client is running on the host and is used to control the GDB server on the target, which in turn controls the application running on the target. GDB client and GDB server can communicate over a TCP/IP network connection as well as via a serial interface. In this Quickstart we will only describe debugging via TCP/IP.

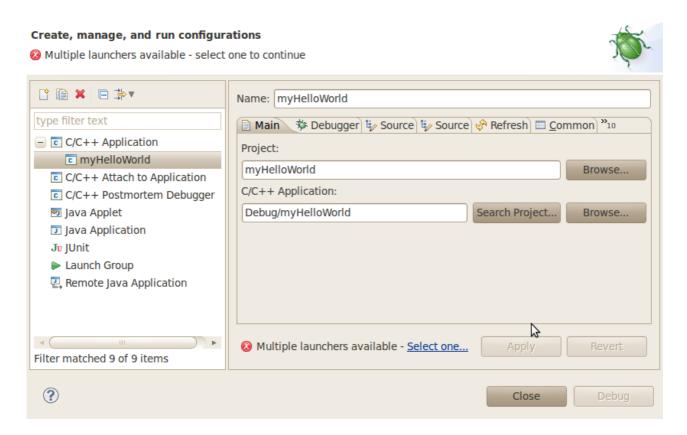
4.1 Starting the GDB server on the target

In this passage you will learn how to start the GDB server on the target. The GDB server will be used to start and control the *myHelloWorld* program.

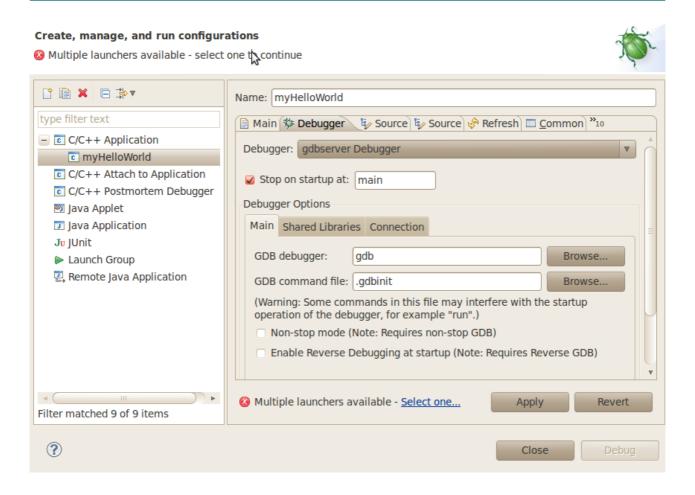
To debug a program with GDB, the program needs extended debugging symbols. This has already been added while building the program.

- Open Microcom
- Type root and press Enter
- Start the GDB server:
 gdbserver 192.168.3.11:10000 myHelloWorld

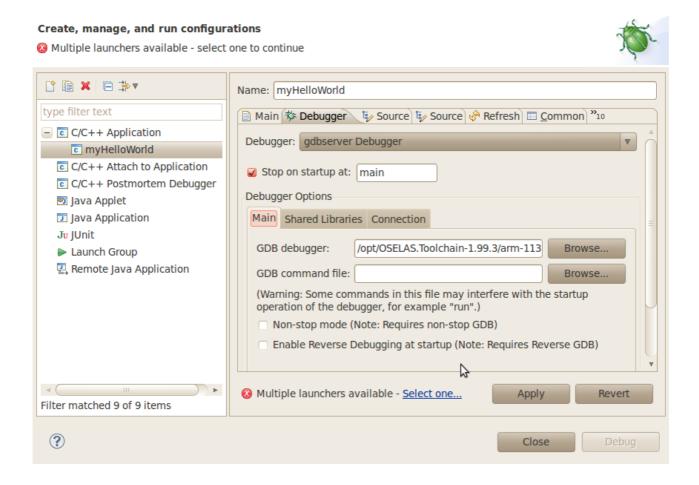
You have started the GDB server on the target. The GDB server is now waiting for connections on TCP port 10000.

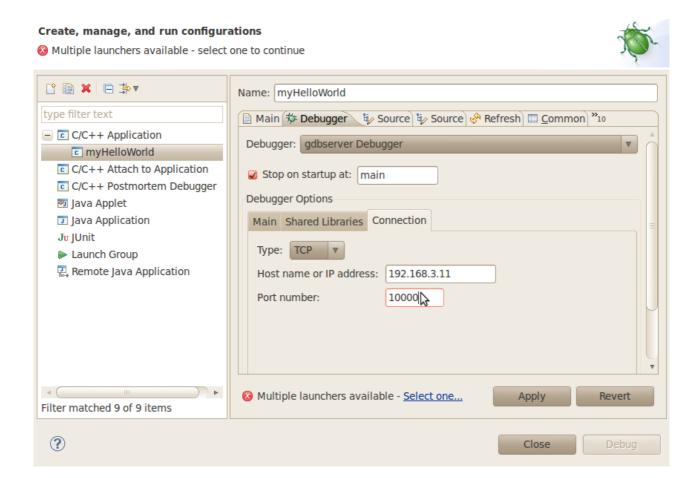

4.2 Configuring and starting the debugger in Eclipse

In this passage you will learn how to configure your project settings to use Eclipse with the GNU debugger. After the configuration of your project settings, the GNU debugger will start and connect to the GDB server on the target.

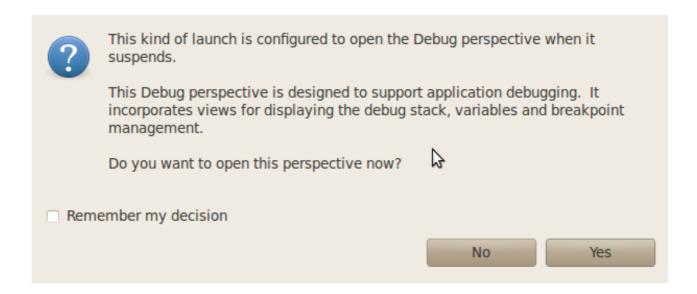

- Start Eclipse if the application is not started yet
- Right-click on the myHelloWorld project in the Navigator window
- Select Debug As ➤ Debug Configurations

A dialog to create, manage and run applications appears.

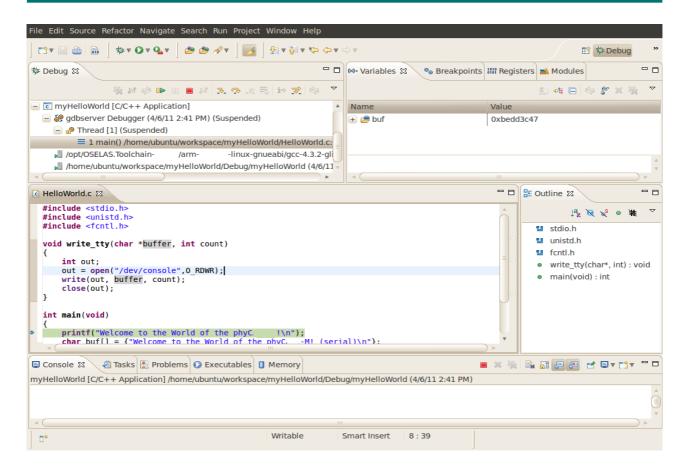

Select myHelloWorld under C/C++ Application


• Select the Debugger tab

- Select gdbserver Debugger from the Debugger drop-down box
- Click the *Browse* button right beside the *GDB debugger* input field. A new dialog opens to choose the GDB executable.
- Click on File System
- Navigate to the directory /opt/OSELAS.Toolchain*/arm-cortexa9-linux-gnueabi/ gcc-4.6.2-qlibc-2.14.1-binutils-2.21.1a-kernel-2.6.39-sanitized/bin
- Select the file arm-cortexa9-linux-qnueabi-qdb
- Click OK

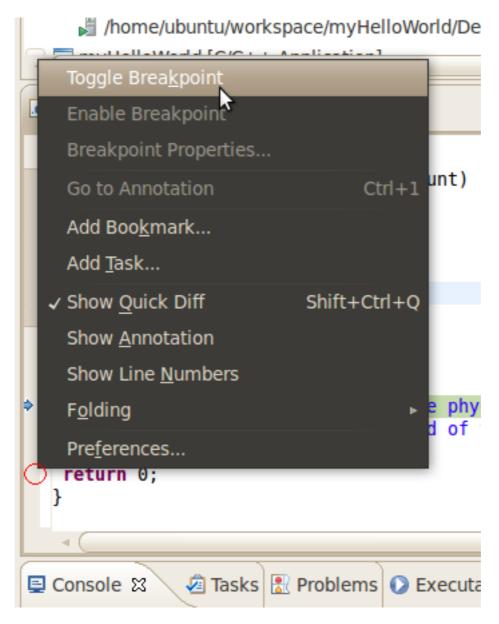


- Keep the GDB command file field empty
- Select the Connection tab and select TCP in the drop-down box
- Enter **192.168.3.11** (the target's IP address) in the *Host name* input field. The host's GDB will connect to this IP address to communicate with the target's GDB-server.


- Click Apply
- Click Debug

A new dialog appears.

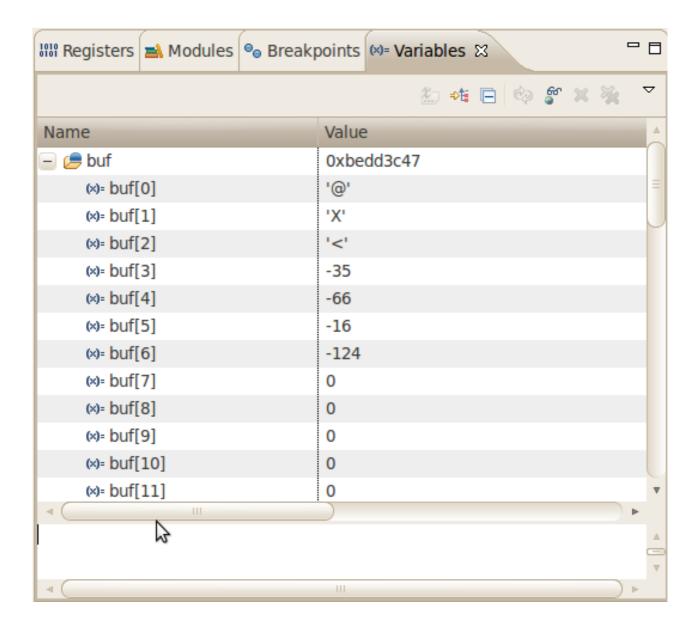
Select Yes to switch to the Debug perspective


The debug perspective opens and the debugger stops automatically at the first line. The host's GDB is now connected to the GDB server on the target.

You have configured your project for remote debugging. You have started the GNU debugger in Eclipse and connected the host's GDB with the target's GDB server. You can now start to debug the project.

4.3 Setting a Breakpoint

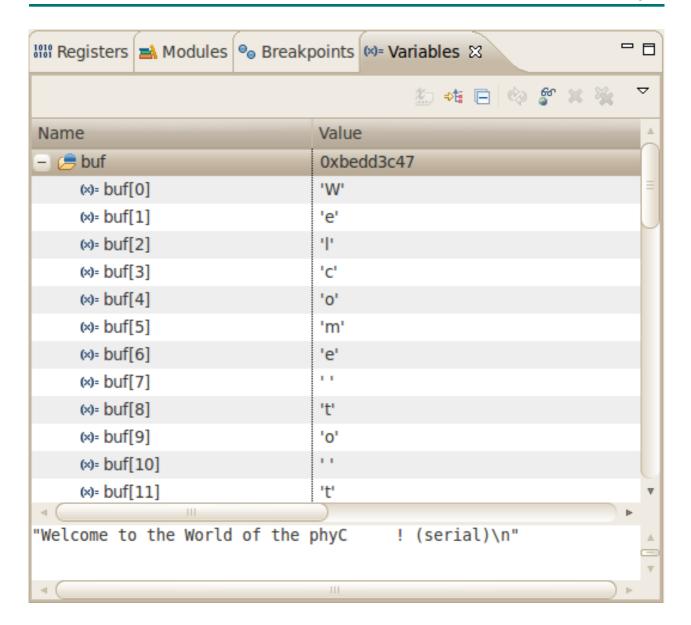
Now you will set a breakpoint in your program. The breakpoint will be set on the last line of the function main(). If you resume the application, the debugger will stop on this line.



- Select the last line in *main()*
- Right-click into the small grey border on the left-hand side and select *Toggle Breakpoint* to set a new breakpoint

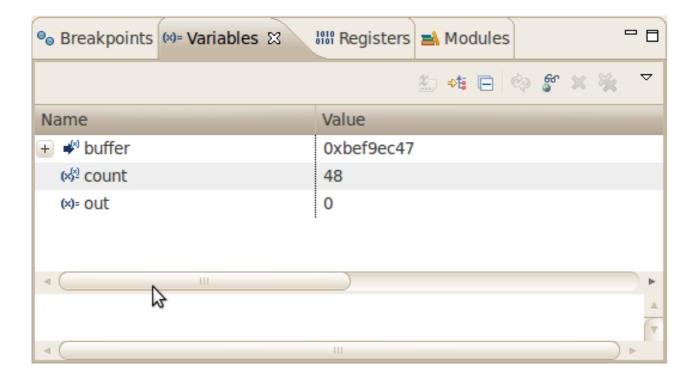
4.4 Stepping and Watching Variable Contents

In this part you will step through the example project with the debugger. You will also learn how to check the content of a variable.


• Expand buf in the Variables window

• Click the Step Over button in the Debug window to step to the next line

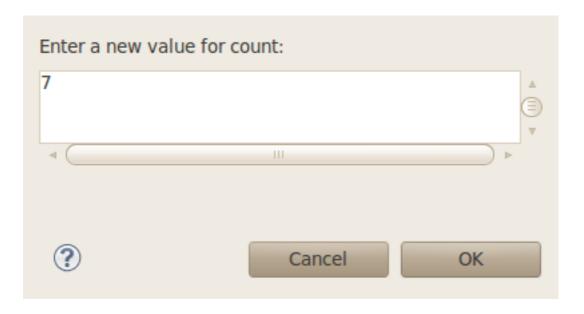
You will see the content of the buf variable in the Variables window.



- Click on the variable buf
- Then click the button Step into to enter the function write_tty()

The debugger stops in write_tty().

You will see the following variable window:


• Click on the variable *buffer*

You will probably see a different address on the buffer pointer. Remember what address is shown in your case; you will need this address later.

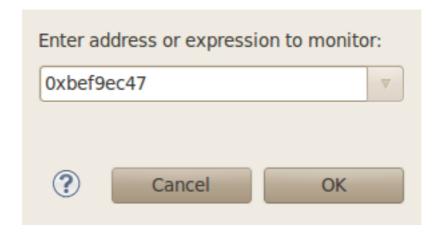
4.5 Stepping and Watching Variable Contents

In this section you will change the value of a variable. At the end of this part you will see the effect of this change.

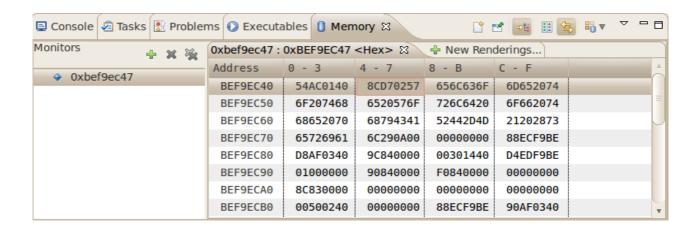
- Select the count variable in the Variables window
- Right-click on count and select Change Value

- Change the value of count to 7 and click OK
- Open Microcom if the application is not already opened
- Go back to Eclipse
- Click the Step Overbutton two times

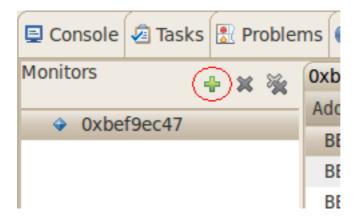
• Change to Microcom

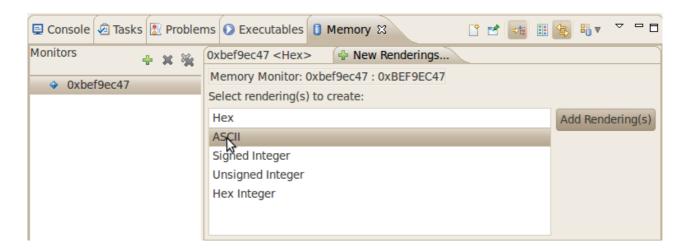

```
root@phyCARD:~ gdbserver 192.168.3.11:10000 myHelloWorld
Process myHelloWorld created; pid = 591
Listening on port 10000
Remote debugging from host 192.168.3.10
Welcome to the World of the phyC !
Welcome
```

You will see the output *Welcome* in the Microcom window. This shows when changing the *counter* variable's value to 7 only the first seven characters of the buffer are output, instead of the whole sentence.


4.6 Using the Memory Monitor

In the last section of this chapter you will use the memory monitor to control the content at a memory address.


- Select the Memory tab
- Click Add Memory Monitor


• Enter the address of buffer and click OK. Remember that the variable's address might differ from your system.


Change the window size

Click Add Rendering

Select ASCII and click OK

You can see the contents of the variable *buffer* at the address *Oxbee13ca7* (or whatever address is used on your system).

Now click the Resume button from the menu bar


```
int out;
out = open("/dev/console",0_RDWR);
write(out, buffer, count);
close(out);
}
int main(void)
{
    printf("Welcome to the World of the phyC !\n");
    char buf[] = {"Welcome to the World of the phyC ! (serial)\n"};
    write_tty(buf, sizeof(buf) -1);
    return 0;
}
```

The debugger stops at the breakpoint in the last line of main().

Click the Resume button to end the application

You have successfully passed the debugging chapter. You are now able to configure and use Eclipse for remote debugging. You can step through a project, watch and change the content of variables, and you can use the memory monitor to view the content at a memory address.

Summary phyFLEX-i-MX6

5 Summary

This Quick Start manual gave you a general "Rapid Development Kit" description, as well as software installation advice and an example program enabling quick out-of-the-box start-up of the phyFLEX-i.MX6 in conjunction with the Eclipse IDE and GNU C/C++ software tools.

In the *Getting Started* section you learned how to configure your host to provide a basis for working with your target platform. You installed the Rapid Development Kit software and learned how to copy and run a program on the target.

In the *Getting More Involved* section you got step-by-step instructions on how to configure and build a new kernel, modify the example application, create and build new projects, and copy programs to your phyFLEX-i.MX6 using Eclipse.

The *Debugging* part of this Quick Start gave you information on setting up and using the GNU debugger with the Eclipse IDE. You learned how to set breakpoints, watching and changing variable contents and using the memory monitor.

6 Installing Linux on the phyFLEX-i.MX6

This part provides prepartions on how to update bootloader (Barebox) on the phyFLEX-i.MX6 and how to write a kernel and/or a root file system image into the target's flash memory.

6.1 Configure Barebox Environments Variables

- Connect the serial cable with the UART1 (connector X3, TOP) on the target and the first serial interface on your host
- Connect the cross-over Ethernet cable with the connector X27 on the target and the correct network card of your host

• Click the *Microcom* icon on your desktop

Microcom is configured with the following configuration:

115200 baud, 1 start bit, 8 data bits, 1 stop bit, no parity, no flow control.

If you want to use another program than Microcom for serial communication, you will have to setup that program with these settings.

• Connect the AC adapter with the power supply connector PWR (12V) on your board

```
Microcom ttyS0
                                                                          barebox 2012.02.0-dirty (Dec 3 2012 - 08:38:05)
Board: phyFLEX i.MX6
registered netconsole as cs1
imx-esdhc@mci0: registered as mci0
imx-esdhc@imx-esdhc2: timeout 1
imx-esdhc@imx-esdhc2: timeout 1
imx-esdhc@imx-esdhc2: timeout 1
ehci@ehci0: USB EHCI 1.00
phyflex init ethernet() mii open() ok, mdev->address = 0x3
m25p@m25p0: n25q128 (16384 Kbytes)
NAND device: Manufacturer ID: 0x2c, Chip ID: 0xdc (Micron NAND 512MiB 3,3V 8-bit
Scanning device for bad blocks
Use nand0.bareboxenv.bb for default barebox environment
Malloc space: 0x1ea00000 -> 0x1f3fffff (size 10 MB)
Stack space : 0x1e9f8000 -> 0x1ea00000 (size 32 kB)
running /env/bin/init...
Hit any key to stop autoboot: 3
barebox@phyFLEX i.MX6:/
```

- Press any key to stop autoboot
- Type edit /env/config to check and edit the configuration file

```
Microcom ttyS0
                                                                            #!/bin/sh
machine=phyflex-imx6
serverip=
user=
# use 'dhcp' to do dhcp in barebox and in kernel
 use 'none' if you want to skip kernel ip autoconfiguration
 ip=dhcp
# or set your networking parameters here
eth0.ipaddr=192.168.3.11
                                                              k
eth0.netmask=255.255.255.0
eth0.gateway=192.168.3.10
eth0.serverip=192.168.3.10
# can be either 'nfs', 'tftp', 'disk', 'nor' or 'nand'
kernel loc=nor
\overline{\#} can be either 'net', 'disk', 'nor', 'nand' or 'initrd'
```

You will see the configuration file that contains Barebox's environment variables.

The default IP address of the target is 192.168.3.11 and the default server IP address is 192.168.3.10. If you want to set up a different network configuration, you can edit the following lines of the configuration file:

```
eth0.ipaddr=target IP address
eth0.netmask=target netmask
eth0.serverip=server IP address
```

- Type CTRL-D to save the settings to the file
- Type save to write the settings to the target's flash
- Press the RESET button on your board. The target will restart with the new settings applied.

6.2 Restoring the Barebox Default Configuration

If you want to restore the default Barebox configuration, you can use the following commands to delete the Barebox environment partition:

erase /dev/env0

After pressing the RESET button on your board, the default Bootloader configuration will be used. This also means that you will be asked to enter the MAC address of your board again.

6.3 Update the Bootloader / Root Filesystem

The bootloader used on the phyFLEX-i.MX6 is *Barebox* which is already preinstalled. If you want to update the bootloader, the root filesystem or your target don't start because nothing is installed please contact our support department.

6.4 Writing the Kernel into Flash

In the directory /tftpboot in your live environment or under /PHYTEC/BSP on your DVD you can find a file called uImage-pfla02 - this file is the Linux kernel image.

You can download the kernel from the TFTP server into the target's RAM, erase the corresponding flash partition, and write the kernel from RAM into flash with one simple command, *update*.

Before executing this command, you should check that your Barebox environment is properly configured.

- Open Microcom and press the RESET button on the target.
 You will see the message "Hit any key to stop autoboot."
- Press any key to stop autoboot
- Type the following command to check your Barebox settings:
 edit /env/config

You will see the configuration file which holds Barebox's environment variables

- Make sure the following values are set within the configuration file: eth0.ippaddr=target IP address eth0.netmask=target netmask eth0.serverip=server IP address
- Type CTRL-D to save the settings to the file

- If you have made any changes to the Barebox environment, type **save** to write these changes to the target's flash. Then press the RESET button on the target. The board reboots with the new settings applied. Then, again, press any key to stop autoboot.
- Type update -t kernel -d nor -f uImage-pfla02 to download and write the kernel into target's flash
- Press the RESET button on the board to restart your target with the written kernel

7 Setup your own Linux-Host-PC

In this chapter we give an overview of the modifications which we made to the Ubuntu version on the Linux-phyFLEX-i.MX6-Kit-DVD in comparison to the original Ubuntu. In the following we distinguish between optional and essential modifications. So you can see faster which changes are important to execute this Quickstart in case you don't want to use our modified Ubuntu version. You can find a step-by-step instruction of the essential changes in order to modify your own distribution.

We can't guarantee that the presented changes are compatible to other distributions or versions. If you want to use another distribution, it might take a lot of individual initiative. We do not support other distributions. You should be sure about what you do.

7.1 Essential settings

In the following you see a short instruction of the important settings which are essential to quarantee the execution of this Quickstart.

7.1.1 Installation of software packages

Begin with the installation of the required software packages. Therefore first add the needed repositories so that the package manager APT (Advance Packaging Tool) knows the packages and can install them.

- Open with an editor and with root privileges /etc/apt/sources.list
- Remove the commentary marks on the following universe-repositories:
 deb http://de.archive.ubuntu.com/ubuntu/ lucid universe
 deb-src http://de.archive.ubuntu.com/ubuntu/ lucid-updates universe
 deb-src http://de.archive.ubuntu.com/ubuntu/ lucid-updates universe
 deb-src http://de.archive.ubuntu.com/ubuntu/ lucid-updates universe
- Add two additional repositories: deb http://archive.canonical.com/ubuntu lucid partner deb-src http://archive.canonical.com/ubuntu lucid partner
- Save the changes

Then add the repositories and now you can continue using APT.

- You must update APT to access to the new package sources. That occurs with the following command:
 - sudo apt-get update

 Now you can install the packages. It is useful to split the commands to keep the overview.

Packages which are needed for compiling and building the Board Support Package: sudo -y apt-get install librourses-dev flex bison texinfo expect gettext patch g++ gzip

Wine, Eclipse and their plug ins:

sudo -y apt-get install cabextract sun-java6-jre eclipse-jdt qt4-dev-tools
For setting up the TFTP server:

sudo -y apt-get install xinetd tftpd tftp

During installation it can happen that some programs ask for a license agreement. Follow the shown steps.

The first preparations are finished and you will find the instructions to setup the bigger software packages in the next chapters.

7.1.2 Setup of toolchain, PTXdist and BSP

The important packages are installed now and we begin with the setup of *PTXdist* which we need to modify the *Board Support Package* by your own.

- First we create a local directory in our /home/ folder and change into this directory: mkdir /home/\$USER/local cd /home/\$USER/local
- In the second step we unpack the compressed PTXdist which you will find on our Linux-phyFLEX-i.MX6-Kit-DVD under /PHYTEC/BSP in the folder local: tar-xif...PHYTEC/BSP/ptxdist-XXX.tar.bz2
- After this step a PTXdist folder is created in which we change by typing:
 cd ptxdist*
- Afterwards we can configure, compile and install PTXdist via the standardized GNU-Tools. For this we use the following commands:

```
./configure
make
sudo make install
```

• The installation is finished and the temporary folder local can be removed:

```
cd ../../
rm -fr local
```

PTXdist is now ready for use and can be accessed through the **ptxdist** command. But before we can start cross-compiling, we need a toolchain which provides tools to build the *Board Support Package*.

On our Linux-phyFLEX-i.MX6-Kit-DVD you will find under /PHYTEC/BSP an already prebuilt Toolchain for the phyFLEX-i.MX6 which we will use.

 Therefore we first decompress the toolchain using the following command: tar -xvPpjf ...PHYTEC/BSP/arm-cortexa9-linux-gnueabi.tar.bz2

By this operation the toolchain is directly archived under /opt/OSELAS*.

If you want to build your own toolchain or if you want further information please read our "BSP-Quickstart phyFLEX-i.MX6" at our FTP under ftp://ftp.phytec.de.

Finally our attention is focused on the setup of the Board Support Package.

In our modified Ubuntu version our BSPs are located under /opt/PHYTEC_BSPs/. So let's use the following procedure:

- sudo mkdir /opt/PHYTEC_BSPs
- Now only root has the privilege to access this folder. Therefore we must change the permissions:

sudo chmod 777 /opt/PHYTEC_BSPs

 After this we switch over to the folder and use our compressed but not yet built PHYTEC-BSP on the DVD under /PHYTEC/BSP/

cd /opt/PHYTEC_BSPs tar -xzf ...PHYTEC/BSP/BSP-Phytec-phyFLEX-i.MX6*.tar.gz

- The BSP is unpacked and we change into the created folder:
 cd BSP-Phytec-phyFLEX-i.MX6*
- The time has come to handle with *PTXdist*. First of all we must specify our platform with which we will work:

ptxdist platform configs/phyFLEX-i.MX6/platformconfig

 The required toolchain should be found automatically and we can use PTXdist to build the BSP:

ptxdist go

Depending on your system hardware this procedure can take up to several hours

 Finally we must create the images which we can flash to the target ptxdist images

Congratulations - you have successfully completed the most timeconsuming pre-requirements. In the next chapter you will be informed about everything concerning the set up of Eclipse.

7.1.3 Setting up Eclipse and integrate plug ins

In this chapter we setup *Eclipse* and integrate the plug ins for QT and C/C++. Thereby you can assign own programs, written in *Eclipse*, to the target.

- First we must create a workspace folder, in which we can save the Eclipse projects.
 In our example we make this in our /home/ folder:
 mkdir /home/\$USER/workspace
- Thereafter we can open *Eclipse* and insert the path to our created workspace in the pop-up window:
 eclipse
- Eclipse is started and now we click at *Help* in the menu bar ► *Install new Software*
- Thereupon a window was opened and in the text field "Work with" we enter the following address: http://download.eclipse.org/tools/cdt/releases/galileo and click on "Add"
- After a while the software which we can integrate appears in the area with a scrollbar. We check "CDT Main Features" and click at "Next".
- Now the system shows us an overview of the installation details, which we skip with a click on Next
- At last the system shows us the licensing agreement, which we accept and after we
 have clicked on Finish it begins to install the required software

The CDT plug in is installed. We close Eclipse and go on with the QT integration.

- For the QT integration we must use an external package from the Nokia website.
 This package is already available on our DVD under / PHYTEC/Applications. We unpack the compressed archive in the /usr/lib folder:
 cd /usr/lib
 - tar xzf ...PHYTEC/Applications/qt-eclipse-integration-linux.x86-1.6.1.tar.gz
- After that we start *Eclipse* with the option *clean*, which cleans any cached data:
 eclipse --clean
- Eclipse is started and now we must setup one small thing:
 In the menu bar we click on "Window" ▶ "Preferences" ▶ "QT" and enter the following QT specific information Name: QT_phyFLEX-i.MX6 ▶ Bin Path: /opt/

PHYTEC_BSPs/BSP-Phytec-phyFLEX-i.MX6*/platform-phyFLEX-i.MX6/sysroot-cross/ bin ► Include Path:/opt/PHYTEC_BSPs/BSP-Phytec-phyFLEX-i.MX6*/platformphyFLEX-i.MX6/sysroot-host/include)

• Finally we close *Eclipse* and start it again with the *clean* option

Congratulations! You have successfully integrated two new plugins in Eclipse and now you can start programming in C/C++ and QT in an Eclipse environment. In the next sub-section you will find a short introduction on how to setup a TFTP server.

7.1.4 Setting up a TFTP server

In the chapter "Installation of software packages" we have installed the required packages to set up a TFTP server. Now we must change some short settings.

First we create (or change) the file /etc/xinet.d/tftp as follows:

```
service tftp
{
protocol = udp
port = 69
socket_type = dgram
wait = yes
user = nobody
server = /usr/sbin/in.tftpd
server_args = -s /tftpboot
disable = no
}
```

 Then we must create a folder called /tftpboot. The TFTP server accesses this folder later.

mkdir /tftpboot

At last we must set the right permissions:

chmod 777 /tftpboot

You have successfully set up the TFTP server. In the future the phyFLEX-i.MX6 can access to the /tftpboot/ folder to load the images.

7.2 Optional settings

In the following we show the optional settings. These settings are not needed for a successful operation of this Quickstart. They only simplify the handling and the look of the system. For this reason we show the modifications without big explanation.

- Installation of *vim*, the improved *vi* editor
- Creation of desktop-icons for faster and easier start of required programs
- The following modifications were made to the look of Ubuntu:
 - Other wallpaper and associated options were adjusted with the help of gconftool-2
 - Window buttons for Maximize, Minimize and Close were moved to the right side
 - Changing the color of the *Gnome* terminal
 - Installation of gnome-color-chooser to change the look of the desktop icons more easily
- Alias for the commands .. and wine added in /home/\$USER/.bashrc
- History-search-backward and history-search-forward in /etc/inputrc is activated.
 This allows you to search through your history with the entered string.
- Also there are some scripts that will be executed at the first start after the installation. These scripts ensure that the right permissions are set for the created user.

8 Installation of the modified Ubuntu

In this chapter you will find an instruction on how to install the modified Ubuntu on the Linux-phyFLEX-i.MX6-Kit-DVD.

If another operating system is installed on your computer, you should first make a backup of your important files. Before we can start, make sure that your computer is set to boot from DVD before it boots from a hard disk drive.

- Insert the Linux-phyFLEX-i.MX6-Kit-DVD into your DVD drive
- Start or restart your computer. Your system finds a bootable DVD and starts from it. After a while a language screen appears.
- Select your desired language and click Install Ubuntu...
- The **Where are you?** window appears. Select the location closest to your location and click **Forward**.
- The Keyboard layout window appears. If the suggested option is not correct, select the correct keyboard layout and click Forward.
- The Prepare disk space window appears. Now you have different options to install Ubuntu:
 - 1. Install it side by side (only if another OS was found)
 If you want to install Ubuntu with dual booting: in the new partition size area, drag the area between the two partitions to create your desired partition sizes.
 - 2. Erase and use the entire disk Installing Ubuntu on your entire hard disk will erase all data that is currently on the drive.
 - 3. Specify partitions manually An advanced mode to set the partitions manually. Only for more involved users. After you have made your decision and adapted it to your wishes click on **Forward.**
- The Who are you? window appears. Enter the requested information and click Forward.
- The **Ready to install** window appears. Verify that the language, layout, location, and personal information are correct and click **Install**.
- The installation wizard begins and when the installation wizard has finished, the "Installation complete" window appears. Click Restart now to restart your computer. Ubuntu is now installed.

phyFLEX-i-MX6 Revision History

9 Revision History

Date	Version numbers	Changes in this manual
09-21-2012	Quickstart L-781e_1	First draft
12-05-2012	Quickstart L-781e_2	Remove "Getting more involved" chapter Fixed some mistakes