

phyCORE-167HS/E

Hardware Manual

Edition May 2004

In this manual are descriptions for copyrighted products that are not explicitly indicated as such. The absence of the trademark (TM) and copyright (©) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is believed to be entirely reliable. However, PHYTEC Meßtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Meßtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Meßtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages which might result.

Additionally, PHYTEC Meßtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Meßtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2004 PHYTEC Meßtechnik GmbH, D-55129 Mainz. Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC Meßtechnik GmbH.

	EUROPE	NORTH AMERICA
Address:	PHYTEC Technologie Holding AG Robert-Koch-Str. 39 D-55129 Mainz GERMANY	PHYTEC America LLC 203 Parfitt Way SW, Suite G100 Bainbridge Island, WA 98110 USA
Ordering Information:	+49 (800) 0749832 order@phytec.de	1 (800) 278-9913 sales@phytec.com
Technical Support:	+49 (6131) 9221-31 support@phytec.de	1 (800) 278-9913 support@phytec.com
Fax:	+49 (6131) 9221-33	1 (206) 780-9135
Web Site:	http://www.phytec.de	http://www.phytec.com

7th Edition: May 2004

Pref	ace		1
1	Introducti	ion	3
	1.1 Block	k Diagram	6
	1.2 View	of the phyCORE-167HS/E	7
2	Pin Descri	iption	9
3	Jumpers		17
	3.1 J1 E	thernet Controller /SBHE Configuration	23
	3.2 J2 In	nternal or External Program Memory	24
	3.3 J3 F	lash Addressing	24
	3.4 J4, J5	5 A/D Reference Voltage	25
	3.5 J6 O	scillator Watchdog / On-Chip Flash	25
	3.6 J7, J8	3 Use of the External UART	26
	3.7 J9, J1	10 Configuration of P3.3, P3.4 for I ² C Bus	27
	3.8 J11 I	RTC Interrupt Output	27
	3.9 J12 Y	Write Protection of EEPROM/FRAM	28
	3.10 J13,	J14 Second Serial Interface Configuration	28
	3.11 J15	Address of the Serial EEPROM/ FRAM	29
	3.12 J16, 3	J17, J18, J19 CAN Interfaces	29
	3.13 J20A	/ J20B Remote Download Source	31
	3.14 J21 to	o J24 CAN Transceiver	31
	3.15 J26 I	Ethernet Controller Sleep Mode	32
	3.16 J28 I	Ethernet Controller Chip Select	32
	3.17 J29, 3	J30 Microcontroller Supply Voltage	33
	3.18 J31,	J32 Serial Interface	34
	3.19 J33 I	Ethernet Controller IRQ Signal	35
	3.20 J34 to	o J37 Compatibility Mode phyCORE-167CR/CS	35
4	System Co	onfiguration	37
	4.1 Syste	m Startup Configuration	37
5	Memory N	Models	41
	5.1 Bus 7	Гiming	45
6	Serial Inte	erfaces	47
	6.1 RS-2	32 Interface	47
	6.2 CAN	Interface	48
7	Real-Time	e Clock RTC-8564 (U10)	49
8	Serial EE	PROM/FRAM (U9)	51
9	Remote St	upervisory Chip (U8)	53
10	Flash Mer	nory (U1)	54
11	Battery B	uffer and Voltage Supervisor Chip (U13)	55

12	CS8900A Ethernet Controller	56
	12.1 Fundamentals	56
	12.2 Memory Mode	56
13	Technical Specifications	
14	Hints for Handling the phyCORE-167HS/E	59
15	The phyCORE-167HS/E on the phyCORE Development	
	Board HD200	
	15.1 Concept of the phyCORE Development Board HD200	61
	15.2 Development Board HD200 Connectors and Jumpers	63
	15.2.1 Connectors	63
	15.2.2 Jumpers on the phyCORE Development	
	Board HD200	65
	15.2.3 Unsupported Features and Improper Jumper Settings	67
	15.3 Functional Components on the phyCORE Development	
	Board HD200	68
	15.3.1 Power Supply at X1	69
	15.3.2 Activating the Bootstrap Loader	
	15.3.3 First Serial Interface at Socket P1A	73
	15.3.4 Power Supply to External Devices via Socket P1A	75
	15.3.5 Second Serial Interface at Socket P1B	77
	15.3.6 First CAN Interface at Plug P2A	82
	15.3.7 Second CAN Interface at Plug P2B	88
	15.3.8 Programmable LED D3	93
	15.3.9 Pin Assignment Summary of the phyCORE, the	
	Expansion Bus and the Patch Field	93
	15.3.10 Battery Connector BAT1	. 102
	15.3.11 Releasing the /NMI Interrupt	. 102
	15.3.12 DS2401 Silicon Serial Number	. 102
	15.3.13 Pin Header Connector X4	. 103
	15.3.14 JP40, S3 Multi-Purpose Push Button Configuration	. 104
16	debugCORE-167HSE	. 105
	16.1 Components of the debugCORE	. 105
	16.2 debugADAPTER-167	. 107
	16.2.1 The Quad-Connector	.108
	16.3 Physical Dimensions	.110
17	Ethernet Port	, 111
18	Revision History	.113
Ind	ex	.115

Index of Figures

Figure 1:	Block Diagram phyCORE-167HS/E	6
Figure 2:	View of the phyCORE-167HS/E (Controller Side)	7
Figure 3:	View of the phyCORE-167HS/E (Connector Side)	7
Figure 4:	Pinout of the phyCORE-Connector (Top View, with Cross Section Insert)	11
Figure 5:	Numbering of the Jumper Pads	17
Figure 6:	Location of the Jumpers (Controller Side)	17
Figure 7:	Location of the Jumpers (Connector Side)	18
Figure 8:	Memory Model Examples	44
Figure 9:	Physical Dimensions	57
Figure 10:	Modular Development and Expansion Board Concept with the phyCORE-167HS/E	62
Figure 11:	Location of Connectors on the phyCORE Development Board HD200	63
Figure 12:	Numbering of Jumper Pads	65
Figure 13:	Location of the Jumpers (View of the Component Side)	65
Figure 14:	Default Jumper Settings of the phyCORE Development Board HD200 with phyCORE-167HS/E	66
Figure 15:	Connecting the Supply Voltage at X1	69
Figure 16:	Pin Assignment of the DB-9 Socket P1A as First RS-232 (Front View)	73
Figure 17:	Location of Components at U12 and U13 for Power Supply to External Subassemblies	75
Figure 18:	Pin Assignment of the DB-9 Socket P1B as Second RS-232 (UART Populated, Front View)	79
Figure 19:	Pin Assignment of the DB-9 Socket P1B as Emulated RS-232 (Front View)	80
Figure 20:	Pin Assignment of the DB-9 Plug P2A (CAN Transceiver on phyCORE-167HS/E, Front View)	82

Figure 21:	Pin Assignment of the DB-9 Plug P2A (CAN Transceiver on Development Board)
Figure 22:	Pin Assignment of the DB-9 Plug P2A (CAN Transceiver on Development Board with Galvanic Separation)86
Figure 23:	Pin Assignment of the DB-9 Plug P2B (CAN Transceiver on phyCORE-167HS/E, only with C167CS)
Figure 24:	Pin Assignment of the DB-9 Plug P2B (CAN Transceiver on Development Board, only with C167CS)
Figure 25:	Pin Assignment of the DB-9 Plug P2B (CAN Transceiver on Development Board with Galvanic Separation, only with C167CS)
Figure 26:	Pin Assignment Scheme of the Expansion Bus94
Figure 27:	Pin Assignment Scheme of the Patch Field
Figure 28:	Connecting the DS2401 Silicon Serial Number
Figure 29:	Pin Assignment of the DS2401 Silicon Serial Number 103
Figure 30:	Positions of the Additional Components on the debugCORE-167HSE
Figure 31:	Physical Dimensions debugCORE-167HSE
Figure 32:	Ethernet Transformer Module Connector

Index of Tables

Table 1:	Pinout of the phyCORE-Connector X1	15
Table 2:	Jumper Settings	23
Table 3:	J1 Ethernet Controller /SBHE Configuration	23
Table 4:	J2 Code Fetch Selection	24
Table 5:	J3 Flash Addressing	24
Table 6:	J4, J5 A/D Converter Reference Voltage	25
Table 7:	J6 Activating the Oscillator Watchdog	25
Table 8:	J7, J8 Control Signals for Optional External UART	26
Table 9:	J9, J10 P3.3, P3.4 / I ² C Bus Configuration	27
Table 10:	J11 P2.9 / RTC Interrupt Configuration	27
Table 11:	J12 Write Protection of EEPROM/FRAM	28
Table 12:	J13, J14 Second Serial Interface Configuration	28
Table 13:	J15 EEPROM/FRAM Address Configuration	29
Table 14:	J16, J17, J18, J19 CAN Interface Configuration	30
Table 15:	J20A, J20B Remote Download Source Configuration	31
Table 16:	J26 Ethernet Controller Sleep Mode Configuration	32
Table 17:	J28 Ethernet Controller Chip Select Configuration	32
Table 18:	J29, J30 Configuration VCC Pins Microcontroller	33
Table 19:	J31, J32 First Serial Interface Configuration	34
Table 20:	J33 Ethernet Controller IRQ Signal Configuration	35
Table 21:	J34 to J37 Compatibility Mode PCM-009	36
Table 22:	Functional Settings on Port P0 for System Startup Configuration	38
Table 23:	System Startup Configuration Registers	40
Table 24:	Memory Device Options for U9	51
Table 25:	EEPROM/FRAM Write Protection	51
Table 26:	EEPROM/FRAM Address	52

Table 27:	Flash Memory Types and Manufacturers	. 54
Table 28:	Improper Jumper Setting for JP16 on the Development Board	. 67
Table 29:	Improper Jumper Setting for JP30/33 on the Development Board	. 67
Table 30:	JP9 Configuration of the Main Supply Voltage VCC	. 69
Table 31:	JP9 Improper Jumper Settings for the Main Supply Voltage	. 70
Table 32:	JP28 Configuration of the Boot Button	. 71
Table 33:	JP28 Configuration of a Permanent Bootstrap Loader Start	. 72
Table 34:	JP22, JP23, JP10 Configuration of Boot via RS-232	. 72
Table 35:	Improper Jumper Settings for Boot via RS-232	. 72
Table 36:	Jumper Configuration for the First RS-232 Interface	. 73
Table 37:	Improper Jumper Settings for DB-9 Socket P1A as First RS-232	. 74
Table 38:	JP24 Power Supply to External Devices Connected to P1A on the Development Board	. 76
Table 39:	Jumper Configuration of the DB-9 Socket P1B (no second RS-232)	. 77
Table 40:	Improper Jumper Settings for DB-9 Socket P1B (no second RS-232)	. 78
Table 41:	Jumper Configuration of the DB-9 Socket P1B (UART, 2 nd RS-232)	. 79
	Jumper Configuration of the DB-9 Socket P1B (2 nd RS-232 via Software Emulation)	. 80
Table 43:	Improper Jumper Settings for DB-9 Socket P1B (2 nd RS-232 via Software Emulation)	. 81
Table 44:	Jumper Configuration for CAN Plug P2A using the CAN Transceiver on the phyCORE-167HS/E	. 82
Table 45:	Jumper Configuration for CAN Plug P2A using the CAN Transceiver on the Development Board	. 83
Table 46:	Improper Jumper Settings for the CAN Plug P2A (CAN Transceiver on the Development Board)	

Table 47:	Jumper Configuration for CAN Plug P2A using the CAN Transceiver on the Development Board with Galvanic Separation	85
Table 48:	JP39 CAN Bus Voltage Supply Reduction	86
Table 49:	Improper Jumper Settings for the CAN Plug P2A (CAN Transceiver on Development Board with Galvanic Separation)	87
Table 50:	Jumper Configuration for CAN Plug P2B using the CAN Transceiver on the phyCORE-167HS/E	88
Table 51:	Jumper Configuration for CAN Plug P2B using the CAN Transceiver on the phyCORE-167HS/E	89
Table 52:	Improper Jumper Settings for the CAN Plug P2B (CAN Transceiver on the Development Board, only with C167CS)	90
Table 53:	Jumper Configuration for CAN Plug P2B using the CAN Transceiver on the Development Board with Galvanic Separation (only with C167CS)	91
Table 54:	Improper Jumper Settings for the CAN Plug P2B (CAN Transceiver on Development Board with Galvanic Separation)	92
Table 55:	JP17 Configuration of the Programmable LED D3	93
Table 56:	Pin Assignment Data/Address Bus for the phyCORE-167HS/E / Development Board / Expansion Board	95
Table 57:	Pin Assignment Port P2, P3, P4 for the phyCORE-167HS/E / Development Board / Expansion Board	96
Table 58:	Pin Assignment Port P5, P6, P7, P8 for the phyCORE-167HS/E/ Development Board / Expansion Board	97
Table 59:	Pin Assignment Interface Signals for the phyCORE-167HS/E / Development Board / Expansion Board	98

phyCORE-167HS/E

Table 60:	Pin Assignment Control Signals for the phyCORE-167HS/E / Development Board / Expansion Board	99
Table 61:	Pin Assignment Power Supply for the phyCORE-167HS/E / Development Board / Expansion Board	. 100
Table 62:	Unused Pins on the phyCORE-167HS/E / Development Board / Expansion Board	. 101
Table 63:	JP28 Releasing the /NMI Interrupt	. 102
Table 64:	JP19 Jumper Configuration for Silicon Serial Number Chip	. 102
Table 65:	JP40 Multi-Purpose Push Button S3 Configuration	. 104
Table 66:	Pinout Pin Header Row X2 on the debugCORE-167HSE	. 106
Table 67:	Connector Layout of the Ouad-Connector (X3)	. 109
Table 68:	Ethernet Transformer Connector Pinout	. 111
Table 69:	Jumper for Ethernet Transformer Port	. 112

Preface

This phyCORE-167HS/E Hardware Manual describes the board's design and functions. Precise specifications for Infineon's C167Cx microcontroller series controller can be found in the enclosed microcontroller Data Sheet/User's Manual. If software is included please also refer to additional documentation for this software.

In this hardware manual and in the attached schematics, low active signals are denoted by a "/" in front of the signal name (i.e.: /RD). A "0" indicates a logic-zero or low-level signal, while a "1" represents a logic-one or high-level signal.

Declaration of Electro Magnetic Conformity of the PHYTEC phyCORE-167HS/E

PHYTEC Single Board Computers (henceforth products) are designed for installation in electrical appliances or as dedicated Evaluation Boards (i.e.: for use as a test and prototype platform for hardware/software development) in laboratory environments.

Caution:

PHYTEC products lacking protective enclosures are subject to damage by ESD and, hence, may only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD-dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Moreover, PHYTEC products should not be operated without protection circuitry if connections to the product's pin header rows are longer than 3 m.

PHYTEC products fulfill the norms of the European Union's Directive for Electro Magnetic Conformity only in accordance to the descriptions and rules of usage indicated in this hardware manual (particularly in respect to the pin header rows or connectors, power connector and serial interface to a host-PC).

Implementation of PHYTEC products into target devices, as well as user modifications and extensions of PHYTEC products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

The phyCORE-167HS/E is one of a series of PHYTEC Single Board Computers that can be populated with different controllers and, hence, offers various functions and configurations. PHYTEC supports all common 8- and 16-bit controllers in two ways:

- (1) as the basis for Rapid Development Kits which serve as a reference and evaluation platform
- (2) as insert-ready, fully functional micro-, mini- and phyCORE OEM modules, which can be embedded directly into the user's peripheral hardware, design.

PHYTEC's microcontroller modules allow engineers to shorten development horizons, reduce design costs and speed project concepts from design to market.

1 Introduction

The phyCORE-167HS/E belongs to PHYTEC's phyCORE Single Board Computer module family. The phyCORE SBCs represent the continuous development of PHYTEC Single Board Computer technology. Like its mini-, micro- and nanoMODUL predecessors, the phyCORE boards integrate all core elements of a microcontroller system on a subminiature board and are designed in a manner that ensures their easy expansion and embedding in peripheral hardware developments.

As independent research indicates that approximately 70 % of all EMI (Electro Magnetic Interference) problems stem from insufficient supply voltage grounding of electronic components in high frequency environments the phyCORE board design features an increased pin package. The increased pin package allows dedication of approximately 20 % of all pin header connectors on the phyCORE boards to Ground. This improves EMI and EMC characteristics and makes it easier to design complex applications meeting EMI and EMC guidelines using phyCORE boards even in high noise environments.

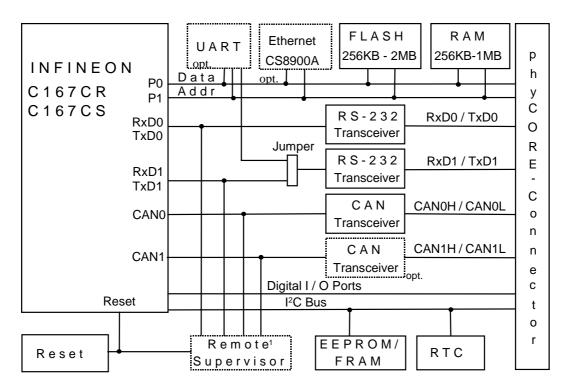
phyCORE boards achieve their small size through modern SMD technology and multi-layer design. In accordance with the complexity of the module, 0402-packaged SMD components and laser-drilled Microvias are used on the boards, providing phyCORE users with access to this cutting edge miniaturization technology for integration into their own design.

The phyCORE-167HS/E is a subminiature (60 x 53 mm) insert-ready Single Board Computer populated with Infineon's C167Cx microcontroller. Its universal design enables its insertion in a wide range of embedded applications. All controller signals and ports extend from the controller to high-density pitch (0.635 mm) connectors aligning two sides of the board, allowing it to be plugged like a "big chip" into a target application.

Precise specifications for the controller populating the board can be found in the applicable controller User's Manual or Data Sheet. The descriptions in this manual are based on the Infineon C167CR/C167CS. No description of compatible microcontroller derivative functions is included, as such functions are not relevant for the basic functioning of the phyCORE-167HS/E.

The phyCORE-167HS/E offers the following features:

- subminiature Single Board Computer (60 x 53 mm) achieved through modern SMD technology
- populated with the Infineon C167Cx microcontroller (QFP-144 packaging) featuring up to two¹ on-chip 2.0B CAN modules
- improved interference safety achieved through multi-layer PCB technology and dedicated Ground pins
- controller signals and ports extend to two 100-pin high-density (0.635 mm) Molex connectors aligning two sides of the board, enabling it to be plugged like a "big chip" into target application
- 16-bit, demultiplexed bus mode
- 20 40 MHz clock frequency (100 ns 50 ns instruction cycle)
- 16 MByte address space
- 256 kByte to 2 MByte external Flash on-board²
- on-board Flash programming, no dedicated Flash programming voltage required through use of 5 V Flash devices
- 512 kByte to 1 MByte RAM on-board²
- up to 2¹ CAN interfaces with Philips 82C251 CAN transceiver, or Siliconix' Si9200EY
- I²C Real-Time Clock with internal quartz
- 4 to 32 kByte I²C EEPROM¹, or 512 Byte to 8 kByte FRAM¹
- Voltage Supervisory Chip for Reset logic and power supervision
- Remote Supervisory Circuit³
- free Chip Select signals for easy connection of peripheral devices⁴
- requires single 5 V / <220 mA supply voltage
- RS-232 transceiver for two serial interfaces
- optional CS8900A 10Base-T Ethernet controller
- optional UART for second asynchronous serial interface
- support for modem signals CTS, RTS, DTR, and DSR over the second serial interface (only when populated with external UART)


^{1:} Dual on-chip CAN is only available with Infineon's C167CS microcontroller.

²: Please contact PHYTEC for more information about additional modul configurations.

^{3:} This feature is under development and not available yet.

⁴: Number of available /CS signals depends on configuration of the phyCORE module.

1.1 Block Diagram

^{1:} This feature is under development and is not available yet.

Figure 1: Block Diagram phyCORE-167HS/E

1.2 View of the phyCORE-167HS/E

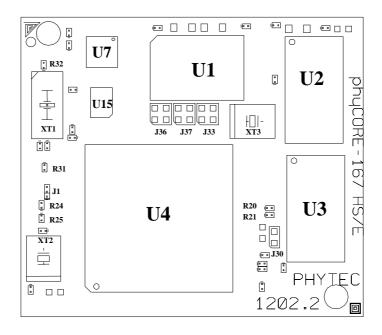


Figure 2: View of the phyCORE-167HS/E (Controller Side)

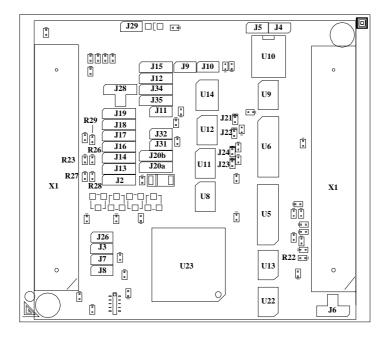


Figure 3: View of the phyCORE-167HS/E (Connector Side)

2 Pin Description

Please note that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller manuals/data sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

As *Figure 4* indicates, all controller signals extend to surface mount technology (SMT) connectors (0.635 mm) lining two sides of the module (referred to as phyCORE-connector). This allows the phyCORE-167HS/E to be plugged into any target application like a "big chip".

A new numbering scheme for the pins on the phyCORE-connector has been introduced with the phyCORE specifications. This enables quick and easy identification of desired pins and minimizes errors when matching pins on the phyCORE module with the phyCORE-connector on the appropriate PHYTEC Development Board or in user target circuitry.

The numbering scheme for the phyCORE-connector is based on a two dimensional matrix in which column positions are identified by a letter and row position by a number. Pin 1A, for example, is always located in the upper left hand corner of the matrix. The pin numbering values increase moving down on the board. Lettering of the pin connector rows progresses alphabetically from left to right (refer to Figure 4).

The aligned numbered matrix can be with the above; phyCORE-connector phyCORE-167HS/E (viewed from pointing down) or with the socket of the corresponding phyCORE Development Board/user target circuitry. The upper left-hand corner of the numbered matrix (pin 1A) is thus covered with the corner of the phyCORE-167HS/E marked with a white triangle. The numbering scheme is always in relation to the PCB as viewed from above, even if all connector contacts extend to the bottom of the module.

The numbering scheme is thus consistent for both the module's phyCORE-connector as well as mating connectors on the phyCORE Development Board or target hardware, thereby considerably reducing the risk of pin identification errors.

Since the pins are exactly defined according to the numbered matrix previously described, the phyCORE-connector is usually assigned a single designator for its position (X1 for example). In this manner the phyCORE-connector comprises a single, logical unit regardless of the fact that it could consist of more than one physical socketed connector. The location of row 1 on the board is marked by a white triangle on the PCB to allow easy identification.

The following figure (*Figure 4*) illustrates the numbered matrix system. It shows a phyCORE-167HS/E with SMT phyCORE-connectors on its underside (defined as dotted lines) mounted on a Development Board. In order to facilitate understanding of the pin assignment scheme, the diagram presents a crossview of the phyCORE module showing these phyCORE-connectors mounted on the underside of the module's PCB.

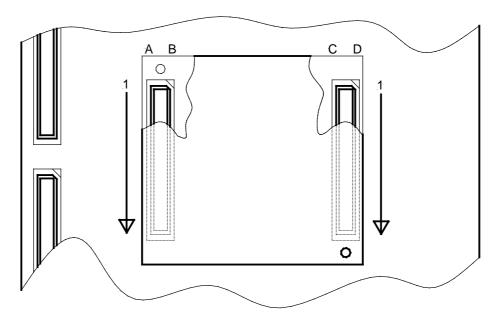


Figure 4: Pinout of the phyCORE-Connector (Top View, with Cross Section Insert)

Many of the controller port pins accessible at the connectors along the edges of the board have been assigned alternate functions that can be activated via software.

Table 1 provides an overview of the pinout of the phyCORE-connector, as well as descriptions of possible alternative functions. Please refer to the Infineon C167Cx User's Manual/Data Sheet for details on the functions and features of controller signals and port pins.

Pin Number	Signal	I/O	Description
Pin Row X1A			•
1A	CLKIN	I	Optional external clock generator
2A, 7A, 12A, 17A,	GND	-	Ground 0 V
22A, 27A, 32A,			
37A, 42A, 47A			
3A	P2.9	I/O	CAPCOM1: CC9 Capture Input/Compare Output
			Fast external interrupt 1 input (I)
4A	/NMI	I	Non-masked interrupt input
5A	P6.4/ /CS4	О	Chip Select #4
6A	ALE	0	Address latch enable
8A	/WR (default)	О	/WR (or /WRL) signal of the microcontroller (see
	or /WRL		description for Jumper J34, section 3.20)
9A, 10A, 11A,	A1, A2, A4,	O	Address line of the microcontroller
13A, 14A, 15A,	A7, A9, A10,		
16A, 18A,	A12, A15,		
24A, 25A,	A17, A18,		
26A, 28A	A20, A23		
19A, 20A, 21A,	D1, D2, D4,	I/O	Data line of the microcontroller
23A, 29A, 30A,	D7, D9, D10,		
31A, 33A	D12, D15		
34A	/RDY	I	Microcontroller READY signal input
35A	IRQ_UART	O	IRQ_UART
	(default) / or		or LINK_LED (see description for Jumper J36,
	LINK_LED		section 3.20)
36A	P6.6/ /HLDA	I/O	Acknowledge output (master mode)/ input
			(slave mode)
38A,	P7.1,	O	POUT1 PWM Channel 1
39A	P7.3		POUT3 PWM Channel 3
40A,	P7.4,	I/O	CAPCOM2:CC28 Capture Input/Compare Output
41A	P7.6		CAPCOM2:CC30 Capture Input/Compare Output
43A	P3.9	I/O	SSC Master transmit/Slave receive
44A	P3.0	I	CAPCOM1 Timer T0 Counter input
45A	P3.1	О	GPT2 Timer T6 Latch output
46A	P3.3	O	GPT1 Timer T3 Latch output
48A	P3.6	I	GPT1 Timer T3 Counter input
49A	P6.0//CS0	O	Chip Select #0
50A	P6.1, /CS1	O	Chip Select #1
	(default) / or		or IRQ_ETH (Ethernet) (see description for Jumper
	IRQ_ETH		J33, section 3.19)

Pin Number	Signal	I/O	Description
Pin Row X1B			•
1B	P3.15	О	CLKOUT system clock output
2B,	P2.8,	I/O	CAPCOM1: CC8 Capture Input/Compare Output
			Fast external interrupt 0 input (I)
3B	P2.10		CAPCOM1: CC10 Capture Input/Compare Output
			Fast external interrupt 2 input (I)
4B, 9B, 14B, 19B,	GND	-	Ground 0 V
24B, 29B, 34B,	01,2		Stound 0 1
39B, 44B, 49B			
5B	P6.3//CS3	О	Chip Select #3
6B	P6.2//CS2	О	Chip Select #2
7B	/RD	О	/RD signal of the microcontroller
8B, 10B, 11B,	A0, A3, A5,	О	Address line of the microcontroller
12B, 13B, 15B,	A6, A8, A11,		
16B, 17B,	A13, A14,		
23B, 25B,	A16, A19,		
26B, 27B	A21, A22		
18B, 20B, 21B,	D0, D3, D5,	I/O	Data line of the microcontroller
22B, 28B, 30B,	D6, D8, D11,		
31B, 32B	D13, D14		
33B	P3.12, /BHE	О	Microcontroller /BHE (or /WRH) signal, (see
	(default) / or		description for Jumper J35, section 3.20)
	/WRH		
35B	P6.5//HOLD	I	Microcontroller /HOLD signal
36B	P6.7//BREQ	O	Microcontroller /BREQ signal
37B,	P7.0,	О	POUT0 PWM Channel 0
38B	P7.2		POUT2 PWM Channel 2
40B,	P7.5,	I/O	CAPCOM2:CC29 Capture Input/Compare Output
41B	P7.7		CAPCOM2:CC31 Capture Input/Compare Output
42B, 43B,	P3.8, P3.13,	I/O	Port 3 of the microcontroller (see corresponding
45B, 46B,	P3.2, P3.4,		Data Sheet)
47B, 48B	P3.5, P3.7		
50B	/CS_UART	О	/CS_UART
	(default) / or		or LAN_LED (Ethernet), (see description for
	LAN_LED		Jumper J37, section 3.20)

Pin Number	Signal	I/O	Description
Pin Row X1C			
1C, 2C	VCC	-	Voltage input +5 VDC
3C, 7C, 12C, 17C,	GND	-	Ground 0 V
22C, 27C, 32C,			
37C			
4C, 5C	NC	-	Not connected
			These contacts should remain unconnected on the
			target hardware side.
6C	VBAT	I	Battery input for back-up of RTC
8C	/PFO	O	MAX 690 power fail output
9C	BOOT	I	Input for startup of Bootstrap mode
10C	/RESET	I	/RESET input of the phyCORE-167HS/E
11C	/RESOUT	O	/RESOUT signal of the microcontroller
13C, 14C,	P2.2, P2.4,	I/O	Port 2 of the microcontroller (see corresponding
15C, 16C,	P2.5, P2.7,		Data Sheet)
19C, 20C	P2.11, P2.12		
18C	CAN-H1 ¹	I/O	Differential CANH line of second CAN transceiver
21C	RxD1_RS232	I	Input of the second serial interface of the
			phyCORE-167HS/E, RS-232 level
23C	TxD1_RS232	O	Output of the second serial interface of the
			phyCORE-167HS/E, RS-232 level
24C	/RTS1_RS232	O	/RTS signal of the UART U7, RS-232 level
25C	/CTS1_RS232	I	/CTS signal of the UART U7, RS-232 level
26C	/DSR1_RS232	I	/DSR signal of the UART U7, RS-232 level
28C	/DTR1_RS232	O	/DTR signal of the UART U7, RS-232 level
29C	/RI1_TTL	I	/RI signal of the UART U7, TTL level
30C	/CD1_TTL	I	/CD signal of the UART U7, TTL level
31C	SCL	O	CLK line I ² C bus
33C	LINK_LED	O	LINK_LED (Ethernet) or
	(default) / or		Interrupt output of the UART U7, (see description
	IRQ_UART		for Jumper J36, section 3.20)
34C	LAN_LED	I	LAN_LED (Ethernet)
	(default) / or		or Chip Select signal of the UART U7, (see
	CS_UART		description for Jumper J37, section 3.20)
35C	RxD-	O	Signal RxD- (Ethernet)
36C	TxD-	I	Signal TxD- (Ethernet)
38C,	P8.4,	I/O	CAPCOM2:CC20 Capture Input/Compare Output
39C,	P8.6,		CAPCOM2:CC22 Capture Input/Compare Output
40C	P8.7		CAPCOM2:CC23 Capture Input/Compare Output
41C, 43C,	P5.14 P5.11,	I/O	Port 5 of the microcontroller (see corresponding
44C, 45C,	P5.9, P5.8,		Data Sheet)
46C,48C,	P5.6, P5.3,		
49C,50C	P5.1, P5.0		
42C, 47C	VAGND	-	Analog Ground of the microcontroller

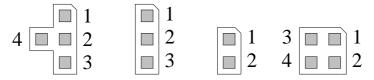

Pin Number	Signal	I/O	Description
Pin Row X1D			•
1D, 2D	VCC	-	Voltage input +5 VDC
3D, 9D, 14D, 19D, 24D, 29D, 34D	GND		Ground 0 V
4D, 5D	VPP	-	Programming voltage for on-chip Flash. Use only if ST10F168 populates the phyCORE module! These contacts should remain unconnected on the target hardware side when using the C167Cx.
6D	VPD	О	Output of back-up voltage supply for buffering of external components
7D	PFI	I	MAX 690 power fail input. If this input is unused, it must be connected to VCC or GND
8D	WDI	I	MAX 690 Watchdog input
10D	/RESET	I	/RESET input of the phyCORE-167HS/E
11D, 12D,	P2.0, P2.1,	I/O	Port 2 of the microcontroller (see corresponding
13D, 15D	P2.3, P2.6		Data Sheet)
16D	P3.11/RxD0	I	Input of the first serial interface, TTL level
17D	P3.10/TxD0	О	Output of the first serial interface, TTL level
18D	CAN-L1 ¹	I/O	Differential CANL line of the 2 nd CAN transceiver
20D	CAN-L0	I/O	Differential CANL line of the first CAN transceiver
21D	CAN-H0	I/O	Differential CANH line of the first CAN transceiver
22D	RxD0_RS232	I	Input of the first serial interface, RS-232 level
23D	TxD0_RS232	О	Output of the first serial interface, RS-232 level
25D	P2.14,	I/O	CAPCOM1: CC14 Capture Input/Compare Output,
26D	P2.15		Fast ext. Interrupt 6 Input (I) CAPCOM1: CC15 Capture Input/Compare Output Fast external Interrupt 7 Input (I) T7IN Timer T7 Count Input (I)
27D,	P8.0,	I/O	CAPCOM2:CC16 Capture Input/Compare Output
28D,	P8.1,		CAPCOM2:CC17 Capture Input/Compare Output
30D,	P8.2,		CAPCOM2:CC18 Capture Input/Compare Output
31D	P8.3		CAPCOM2:CC19 Capture Input/Compare Output
32D	SDA	0	Data line I ² C bus
33D	/IRQ_RTC	О	Interrupt output of the RTC
35D	RxD+	I	RxD+ (Ethernet)
36D	TxD+	O	TxD+ (Ethernet)
37D	P2.13	I/O	CAPCOM1: CC13 Capture Input/Compare Output Fast ext. interrupt 5 input (I)
38D	P8.5	I/O	CAPCOM2:CC21 Capture Input/Compare Output
39D, 44D, 49D	VAGND	<u> </u>	Analog Ground
40D, 41D,	P5.15, P5.13,	I	Port 5 of the microcontroller (see corresponding
42D, 43D,	P5.12, P5.10,		Data Sheet)
45D, 46D,	P5.7, P5.5,		
47D, 48D	P5.4, P5.2		
50D	VAREF	I	Reference voltage input for A/D converter

Table 1: Pinout of the phyCORE-Connector X1

1: Dual on-chip CAN is only available with Infineon C167CS microcontroller-

3 Jumpers

For configuration purposes, the phyCORE-167HS/E has 36 solder jumpers, some of which have been installed prior to delivery. *Figure 5* illustrates the numbering of the jumper pads, while *Figure 6* and *Figure 7* indicate the location of the jumpers on the board. On the phyCORE-167HS/E, only Jumpers J1, J30, J33, J36 and J37 are located on the top side of the circuit board.

z.B.: J6, J28 z.B.:J1,J2,.. z.B.: J3,J4,.. z.B.: J33,J36,..

Figure 5: Numbering of the Jumper Pads

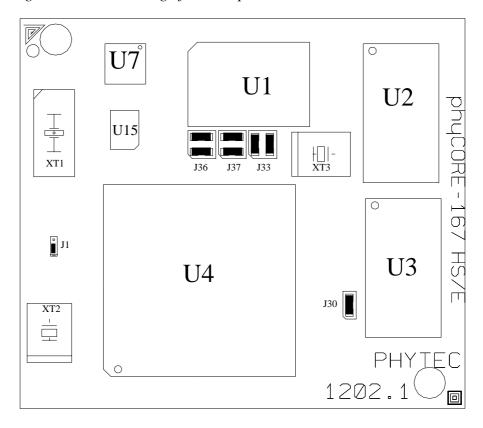


Figure 6: Location of the Jumpers (Controller Side)

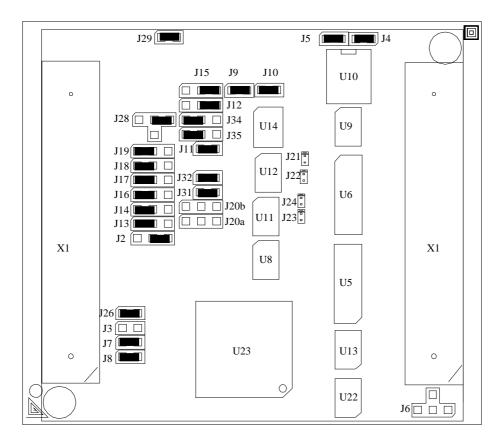


Figure 7: Location of the Jumpers (Connector Side)

The jumpers (J = solder jumper) have the following functions:

	Default S	Setting ¹	Alternative Setting		
J1	(1 + 2)	/CS2, /CS3 or /CS4 connected to Ethernet controller /SBHE input (see J28)	(2+3)	Address line A0 connected to /SBHE input on the Ethernet controller	
J2	(2+3)	external ROM/ Flash active	(1+2)	internal ROM/Flash- EPROM is active	
J 3	(open)	Port P4.4 (A20), can be configured as CAN1 receive line ²	(closed)	P4.4 as address line A20 for external Flash	
J4	(closed)	VAREF derived from supply voltage VCC	(open)	VAREF from external voltage source via pin X1D50	
J5	(closed)	VAGND derived from digital ground GND	(open)	VAREF from external ground via pins X1C42, X1C47, X1D39, X1D44 and X1D49 ³	
J6	(open)	C167CR: Oscillator Watchdog enabled ⁴ C167CS: no function	(1+2) (2+4) (2+3)	C167CR: not allowed! C167CR: not allowed! C167CR: oscillator Watchdog disabled ⁴	
J7	(closed)	IRQ of the UART is connected to P2.8 of the microcontroller	(open)	P2.8 of the microcontroller is freely available as standard I/O at pin header row X1B2	
J8	(closed)	/CS2 of the microcontroller is connected to the external UART	(open)	/CS2 of the microcontroller is freely available at connector pin X1B6	
J9	(closed)	P3.4 of the microcontroller connected to SCL of the I ² C bus	(open)	P3.4 of the microcontroller is freely available as standard I/O at X1B46	
J10	(closed)	P3.3 of the microcontroller connected to SDA of the I ² C bus	(open)	P3.3 of the microcontroller is freely available as standard I/O at X1A46	

^{1:} Applies to standard modules without optional features.

^{2:} Dual on-chip CAN is only available with Infineon C167CS microcontroller.

^{3:} These pins are solely connected to GND of the Development Board when using the phyCORE module on a phyCORE Development Board HD200. It is not possible to attach an external GND potential in this configuration.

^{4:} This function is only available with Infineon's C167CR microcontroller (*see corresponding Data Sheet*).

	Default S	Setting	Alternative Setting		
J11	(closed)	IRQ of the RTC con-	(open)	P2.9 of the controller is	
		nected to pin P2.9 of the		freely available as	
		microcontroller		standard I/O at X1A3	
J12	(open or	deactivates write	(1 + 2)	optional write protection	
	(2 + 3)	protection of the		of the EEPROM/FRAM	
		EEPROM/FRAM		memory device is	
		memory device		activated (see Data	
				Sheet)	
J13	(1 + 2)	RS-232 transceiver (TxD)	(2 + 3)	RS-232 transceiver	
		for the second serial		(TxD) of the second	
		interface connected to		serial interface connected	
		UART (dependens on		to P3.0 of the controller	
		module configuration)			
J14	(1 + 2)	RS-232 transceiver (RxD)	(2 + 3)	RS-232 transceiver	
		for the second serial		(RxD) of the second	
		interface connected to		serial interface connected	
		UART (dependens on		to P3.1 of the controller	
74.	(2 2)	module configuration)	(1 0)	11 6.1 11	
J15	(2 + 3)	address of the serial	(1 + 2)	address of the serial	
		memory device at U9 set		memory device set to	
		to 0xA8 (hex) (see Data		0xAC (hex) (see Data	
T1 (1	(1 . 2)	Sheet of memory device)	(0 . 2)	Sheet of memory device)	
J16 ¹	(1 + 2)	CANO transmit line	(2+3)	CANUTED of the CAN	
		(CANTx) of the CAN transceiver at U11		(CANTx) of the CAN	
		connected to P8.1 of the		transceiver at U11	
		microcontroller (see		connected to P4.6 (A22) of the microcontroller	
		controller Data Sheet) ²		(see controller Data	
		comfonet Data sheet)		Sheet)	
J17 ¹	(1+2)	CAN0 receive line	(2+3)	CAN0 receive line	
	(- · -)	(CANRx) of the CAN	(=)	(CANRx) of the CAN	
		transceiver at U11 con-		transceiver at U11 con-	
		nected to P8.0 of the		nected to Port P4.5 (A21)	
		microcontroller (see		of the microcontroller	
		controller Data Sheet) ²		(see controller Data	
				Sheet)	

¹: **Note:** If the C167CR controller populates the phyCORE module, using the CAN interface reduces the available address space to 1 MByte for each /CS signal.

²: Use of port P8 as CAN interface is only possible with Infineon's C167CS microcontroller.

	Default	Setting	Alternati	ve Setting
J18 ¹	(1 + 2)	CAN1 transmit line	(2+3)	CAN1 transmit line
		(CANTx) of the CAN		(CANTx) of the CAN
		transceiver at U12		transceiver at U12
		connected to P8.3 of the		connected to port 4.7
		microcontroller (see		(A23) of the controller
		controller Data Sheet)		(see µC Data Sheet)
J19 ¹	(1 + 2)	CAN1 receive line	(2 + 3)	CAN1 receive line
		(CANRx) of the CAN		(CANRx) of the CAN
		transceiver at U12 con-		transceiver at U12 con-
		nected to P8.2 of the		nected to Port P4.4 (A20)
		microcontroller (see		of the microcontroller
		controller Data Sheet)		(see µC Data Sheet)
J20A	(open)	no remote download	(1 + 2)	Remote Download
		source connected		Source at P3.1
			(2 + 3)	Remote Download
				Source at P3.11
J20B	(open)	no remote download	(1 + 2)	Remote Download
		source connected		Source CAN1Rx
			(2 + 3)	Remote Download
				Source CAN2Rx
J21	(open)	CAN1_TxD signal	(closed ²	CAN1_TxD signal with
		connected to on-board		TTL level available at
		CAN transceiver U12		X1C18 (for use with
				external transceiver)
J22	(open)	CAN1_RxD signal	(closed) ²	CAN1_RxD signal with
		connected to on-board		TTL level available at
		CAN transceiver U12		X1D18 (for use with
				external transceiver)
J23	(open)	CAN0_RxD signal	(closed) ²	CAN0_TxD signal with
		connected to on-board		TTL level available at
		CAN transceiver U11		X1D20 (for use with
				external transceiver)
J24	(open)	CAN0_TxD signal	(closed) ²	CAN0_TxD signal with
		connected to on-board		TTL level available at
		CAN transceiver U11		X1D21 (for use with
				external transceiver)

_

^{1:} The second CAN interface is only available with Infineon's C167CS (refer to the controller Data Sheet).

 $^{^2}$: Note: Only applicable if on-board CAN transceivers are not populated.

	Default S	Setting	Alternative Setting		
J26	(closed)	Sleep mode on Ethernet controller controlled with port pin P2.14	(open)	P2.14 of the controller is freely available as standard I/O at X1D25	
J28	(2+3)	Chip Select for Ethernet controller connected to /CS4 of the C167Cx	(1 + 2) (2 + 4)	Chip Select for Ethernet connected to /CS2, only if external UART is not populated Chip Select for Ethernet connected to /CS3, only	
J29	(closed)	Pin 17 of the controller is connected to VCC	(open)	if 512 kByte SRAM or less is mounted Pin 17 of the controller is connected to GND via a bypass capacitor	
J30	(closed)	Pin 56 of the controller is connected to VCC	(open)	Pin 56 of the controller is connected to GND via a bypass capacitor	
J31	(closed) ¹	P3.10 used as TXD0 and conected to RS-232 transceiver U6	(open)	P3.10 of the controller is freely available as standard I/O at connector pin X1D17	
J32	(closed) ¹	P3.11 used as RXD0 and conected to RS-232 transceiver U6	(open)	P3.11 of the controller is freely available as standard I/O at connector pin X1D16	
J33	(1 + 2)& (3 + 4)	IRQ from Ethernet controller connected to P2.15, /CS1 available at X1A50	(1+3)	IRQ from Ethernet controller connected to X1A50	
J34	(1 + 2)	standard mode, /WR available at X1A8	(2+3)	compatibility mode PCM-009-xxx, /WRL available at X1A8	
J35	(1 + 2)	standard mode, /BHE available at X1B33	(2 + 3)	compatibility mode PCM-009-xxx, /WRH available at X1B33	

22

¹: **Note:** These jumpers must remain closed on the phyCORE-167HS/E. If they are open, no serial communication is possible, hence PHYTEC FlashTools or the BOOT monitor will not function properly.

	Default Setting		Alternative Setting	
J36		IRQ_UART at X1A35	(1+2)&	IRQ_UART at X1C33
	(2 + 4)	LINK_LED available at	(3 + 4)	LINK_LED available at
		X1C33, standard mode	X1A35, compatibility	
				mode PCM-009-xxx
J37	(1+3)&	/CS_UART at X1B50	(1+2)&	/CS_UART at X1C34
	(2 + 4)	LAN_LED available at	(3 + 4)	LAN_LED available at
		X1C34, standard mode		X1B50, compatibility
				mode PCM-009-xxx

Table 2: Jumper Settings

3.1 J1 Ethernet Controller /SBHE Configuration

Jumper J1 configures which signal connects to the /SBHE input of the Ethernet controller at U23. If J1 is closed at position 1+2 configuration of Jumper J28 (*refer to section 3.16*) defines which of the three available /CS signals from the microcontroller extends to the /SBHE input.

The following configurations are possible:

/SBHE Input Configuration	J1
Chip Select from the C167Cx connected	$1 + 2^*$
to /SBHE input, refer to J28	
Address line A0 connected to /SBHE	2 + 3
input	

^{* =} Default setting

Table 3: J1 Ethernet Controller /SBHE Configuration

3.2 J2 Internal or External Program Memory

At the time of delivery, Jumper J2 is closed at 2+3. This default configuration means that the program stored in the external program memory is executed after a hardware reset. In order to allow the execution of a specific controller's internal program memory, Jumper J2 must be closed at 1+2.

The following configurations are possible:

Code Fetch Selection	J2
Execution from external program memory	2 + 3*
Execution from internal program memory	1 + 2

^{* =} Default setting

Table 4: J2 Code Fetch Selection

3.3 J3 Flash Addressing

Jumper J3 connects the controller's address line A20 with the address line A19 on the Flash device (U1). If using a Flash memory with a capacity of less than 2 MByte, Jumper J3 must remain open in order to avoid conflict with the second CAN interface¹. If a 2 MByte Flash device populates the phyCORE-167HS/E, then Jumper J3 must be closed. In this case, the second CAN interface must be rerouted to and connected at port P8² in order to avoid conflict with the upper address lines.

The following configurations are possible:

Flash Addressing	J3
If Flash memory is < 2 MByte, then P4.4 is used as a standard I/O	open*
or as CAN1 receive line ¹ .	
If Flash memory is $= 2$ MByte, then P4.4 serves as A20 for	closed
addressing the Flash (CAN Rx line must be connected at Port P8) ² .	

* = Default setting

Table 5: J3 Flash Addressing

1: The second CAN interface is only available on the C167CS controller (refer to the User's Manual and Data Sheet).

^{2:} The feature of rerouting CAN signals to port P8 is only available on the C167CS controller.

3.4 J4, J5 A/D Reference Voltage

The A/D converter on the phyCORE-167HS/E requires an upper and lower reference voltage connected at pins 37 and 38 (V_{AREF} , V_{AGND}). The reference voltage source can be selected using Jumpers J4 and J5.

A/D Reference Voltage Source Selection	J4	J5
External reference voltage source (V _{AREF} at X1D50,	open	open ¹
V _{AGND} at X1D39, X1D44 and X1D49)		
V _{AREF} derived from voltage supply VCC	closed*	
V _{AGND} derived from digital ground GND potential		closed*

^{* =} Default setting

Table 6: J4, J5 A/D Converter Reference Voltage

3.5 J6 Oscillator Watchdog / On-Chip Flash

Depending on the type of microcontroller that populates the phyCORE module, the controller pin 84 has various functions. When using the Infineon C167CR, pin 84 controls the oscillator Watchdog. In contrast, when a microcontroller with on-chip Flash populates the module, pin 84 connects the programming voltage. Jumper J6 activates these functions as described in the table below.

The following configurations are possible:

Function of Pin 84	J 6
Activates oscillator Watchdog of the C167CR	open*
Disables oscillator Watchdog of the C167CR	2 + 3
Connects VPP (12 V) at pin 84 for programming of the	1 + 2
on-chip Flash	
Note: This configuration must not be used in conjunction with an	
Infineon C167Cx derivative!	
RC time constant at pin 84	2 + 4
Note: This configuration must not be used in conjunction with an	
Infineon C167Cx derivative!	

* = Default setting

Table 7: J6 Activating the Oscillator Watchdog

^{1:} These pins are solely connected to GND of the Development Board when using the phyCORE module on a phyCORE Development Board HD200. It is not possible to attach an external GND potential in this configuration.

3.6 J7, J8 Use of the External UART

An optional UART can populate the phyCORE-167HS/E at U7. This configuration allows use of a second serial interface. The controller signal /CS2 activates the external UART. Similar to the C167Cx' on-chip UART, serial communication via the external UART can be controlled by an interrupt. In this case, the external interrupt 0 at port P2.8 is used. Jumpers J7 and J8 are used to connect /CS2 and port P2.8 (EX0IN) to the corresponding pins on the external UART.

The following configurations are possible:

Port P2.8	J7
IRQ of the UART connects to the microcontroller at	closed*
pin P2.8	
P2.8 of the microcontroller is freely available as	open
standard I/O at phyCORE-connector pin X1B2	

Chip Select /CS2	J8
/CS2 of the microcontroller connects to the external	closed*
UART	
/CS2 of the microcontroller is freely available at	open
phyCORE-connector pin X1B6	_

^{* =} Default setting

Table 8: J7, J8 Control Signals for Optional External UART

3.7 J9, J10 Configuration of P3.3, P3.4 for I²C Bus

The phyCORE-167HS/E is equipped with a Real-Time Clock at U10 and a serial EEPROM/FRAM at U9. Both the Real-Time Clock and the serial EEPROM/FRAM are accessed by means of an I²C interface. With Jumpers J9 and J10, this interface can be connected to port pins P3.3 and P3.4. Use of these pins as standard I/O lines requires opening of the corresponding jumpers.

The following configurations are possible:

Port P3.3 and P3.4 Configuration	J10	J9
Port P3.3 used as I/O pin at X1A46	open	
Port P3.3 used as I ² C SDA	closed*	
Port P3.4 used as I/O pin at X1B46		open
Port P3.4 used as I ² C SCL		closed*

^{* =} Default setting

Table 9: J9, J10 P3.3, P3.4 / I²C Bus Configuration

3.8 J11 RTC Interrupt Output

Jumper J11 determines whether the interrupt output of the RTC (U10) is connected to port pin P2.9 of the microcontroller. If Jumper J11 remains open, P2.9 can be used as a port pin at X1A3.

Port P2.9 Configuration	J11
Port P2.9 as /INT input for RTC	closed*
Port P2.9 as I/O pin at X1A3	open

^{* =} Default setting

Table 10: J11 P2.9/RTC Interrupt Configuration

3.9 J12 Write Protection of EEPROM/FRAM

Various types of EEPROM/FRAM can populate space U9. Some of these devices provide a write protection function¹. Closing Jumper J12 connects pin 7 of the serial EEPROM/FRAM with VCC and thus activates write protection.

The following configurations are possible:

Write Protection EEPROM/FRAM	J12
Write protection of EEPROM/FRAM	open or
deactivated	2 + 3*
Write protection of EEPROM/FRAM	1 + 2
activated	

^{* =} Default setting

Table 11: J12 Write Protection of EEPROM/FRAM

3.10 J13, J14 Second Serial Interface Configuration

Jumpers J13 and J14 enable selection of the signal source of the second serial interface. As an alternate to the software-emulated interface at port pins P3.0 and P3.1 of the controller, an optional external UART can be installed on the phyCORE-167HS/E at U7. With the implementation of the external UART, the port pins can be used as standard I/O pins at X1A44 (P3.0) and X1A45 (P3.1).

The following configurations are possible:

RS-232 Interface Configuration	J13	J14
UART U7 connected to RS-232 transceiver	1 + 2*	1 + 2*
providing a real second interface		
P3.0 and P3.1 routed to RS-232 transceiver	2 + 3	2 + 3
for software-emulated second serial interface		

* = Default setting

Table 12: J13, J14 Second Serial Interface Configuration

_

^{1:} Refer to the corresponding EEPROM/FRAM Data Sheet for more information on the write protection function.

3.11 J15 Address of the Serial EEPROM/ FRAM

Jumper J15 configures the serial EEPROM/FRAM address. The default configuration (J15 = 2+3) sets the address to 0xA8.

The following configurations are possible:

EEPROM/FRAM Address	J15
0xA8	2 + 3*
0xAC	1 + 2

^{* =} Default setting

Table 13: J15 EEPROM/FRAM Address Configuration

3.12 J16, J17, J18, J19 CAN Interfaces

The first CAN interface of the phyCORE-167HS/E is available at the port pins P4.5 (CAN1Rx) and P4.6 (CAN1Tx, as well as CAN2Tx¹). The second CAN² interface is located at port pins P4.4 (CAN2Rx) and P4.7 (CAN2Tx, as well as CAN1Rx or CAN2Rx¹). These signals extend to the two CAN transceivers at U11 and U12 (PCA82C251, alternately Si9200EY). The CAN transceivers generate the corresponding CANH0, CANL0, CANH1, and CANL1 signals. These signals can be directly connected to a CAN dual-wire bus. Generation of the CAN signals requires closing the solder Jumpers J16, J17, J18, and J19.

Direct access to the CAN1Rx, CAN1Tx, CAN2Rx and CAN2Tx signals is also available at the module's X1 phyCORE-connector if soldering jumpers J16, J17, J18 and J19 are open. This enables use of an external CAN transceiver.

^{1:} The C167CS allows for optional use of various CAN signals on this port. Configuration is made using the SFR (special function register) PCIR. When using the on-board CAN transceivers we recommend to use the signals as indicated in the table below.

^{2:} The second CAN interface is only available with Infineon's C167CS controller.

In order to utilize the full 16 MByte linear address space of the microcontroller, the CAN interface signals can be optionally routed to port 8¹. In this case Jumpers J16 - J19 must be set at positions 1+2. Please refer to the Infineon C167Cx User's Manual/Data Sheet for details on the functions and features of controller signals and port pins.

Note:

If the C167CR controller populates the phyCORE module, using the CAN interface reduces the available address space to 1 MByte for each /CS signal.

The following CAN interface configurations are possible:

Interface CAN1	J16	J17
P8.0 (CAN1Rx)	1 + 2*	1 + 2*
P8.1 (CAN1Tx) ²		
P4.5 (CAN1Rx)	2 + 3	2 + 3
P4.6 (CAN1Tx)		

Interface CAN2 ³	J18	J19
P8.2 (CAN2Rx)	1 + 2*	1 + 2*
P8.3 (CAN2Tx) ¹		
P4.4 (CAN2Rx)	2 + 3	2 + 3
P4.7 (CAN2Tx)		

^{* =} Default setting

Table 14: J16, J17, J18, J19 CAN Interface Configuration

_

^{1:} The feature of rerouting CAN signals to port P8 is only available with Infineon's C167CS controller.

Caution: Ensure correct configuration of the bit field IPC (in controller register PCIR) to allow proper use of the CAN interface (*refer to the microcontroller User's Manual and Data Sheet for further information*).

^{2:} Rerouting CAN signals to port P8 is only available with Infineon's C167CS controller. **Caution:** Ensure correct configuration of the bit field IPC (in controller register PCIR) to allow proper use of the CAN interface (*refer to the microcontroller User's Manual and Data Sheet for further information*).

^{3:} The second CAN interface is only available with Infineon's C167CS controller.

3.13 J20A / J20B Remote Download Source

Space U8 on the module is intended to be populated by a Remote Supervisory Chip¹. This IC can initiate a boot sequence via various serial interfaces (*refer to section 9*). Jumpers J20A and J20B are reserved for future use and remain open as default.

The following configurations are possible:

Download Source	J20A	J20B
not available	open*	open*
Port P3.11 / RxD0	2 + 3	
Port P3.1 / RxD1	1 + 2	
Port CAN1Rx		1 + 2
Port CAN2Rx		2 + 3

^{* =} Default setting

Table 15: J20A, J20B Remote Download Source Configuration

3.14 J21 to J24 CAN Transceiver

Jumpers J21 to J24 are only closed if the CAN transceiver that can populate U11 and U12 are not mounted. In this case the controller's CAN signals with their TTL level are routed to the phyCORE Connector X1.

Note:

J21 to J24 are configured at time of delivery of the phyCORE module and must not be altered at a later time by the user.

-

^{1:} This feature is under development and not available at this time.

3.15 J26 Ethernet Controller Sleep Mode

Closing Jumper J26 connects the microcontroller port pin P2.14 to the Ethernet controller. This port pin can then be used to render the Ethernet controller in sleep mode.

The following configurations are possible:

Ethernet Controller Sleep Mode	J26
Sleep mode can be activated via port P2.14	closed*
Sleep mode can not be activated	open

^{* =} Default setting

Table 16: J26 Ethernet Controller Sleep Mode Configuration

3.16 J28 Ethernet Controller Chip Select

Jumper J28 configures the source of the Chip Select signal that controls the Ethernet controller. Configuration of J28 also depends on the module configuration of the phyCORE-167HS/E.

Module Configuration	/CS Signal	J28
External UART populates the module and	/CS4	2 + 3*
1 MByte RAM available		
UART not mounted, RAM size does not	/CS2	1 + 2
matter		
Only 512 kByte RAM or less available	/CS3	2 + 4

^{* =} Default setting

Table 17: J28 Ethernet Controller Chip Select Configuration

3.17 J29, J30 Microcontroller Supply Voltage

Jumper J29 and J30 connect certain controller pins to their required supply potential.

Note:

Jumper J29 and J30 must be closed in conjunction with the Infineon C167CR or C167CS microcontroller.

VCC Pin Connection	J29	J30
VCC connected to controller	closed*1	closed*1
pins		
C16 and C17 function as bypass	open ²	open ²
capacitors		

^{*1} Default setting phyCORE-167HS/E

Table 18: J29, J30 Configuration VCC Pins Microcontroller

² Must not be used on phyCORE-167HS/E!

3.18 J31, J32 Serial Interface

Jumpers J31 and J32 connect the signals of the first asynchronous serial interface to the on-board RS-232 transceiver (U6). The interface signals are then available with RS-232 level at the phyCORE-connector pins X1D22 (RxD0) and X1D23 (TxD0). If the jumpers are opened, the applicable controller pins P3.10 and P3.11 can be used with their alternative functions or the serial interface signals are available with their TTL level at phyCORE-connector pins X1D17 and X1D16.

Note:

These jumpers must remain closed on the phyCORE-167HS/E. If they are open, no serial communication is possible, hence PHYTEC FlashTools or the BOOT monitor will not function properly.

If the jumpers are closed we recommend **not** to use the interface signals with their TTL level as this will cause damage to the on-board components.

Signal Quality Serial Interface 1	J31	J32
TxD0 and RxD0 available with their	closed*	closed*
RS-232 level		
P3.10 and P3.11 available as I/O pin or	open	open
TxD0 and RxD0 interface signals with		
TTL level		

^{* =} Default setting

Table 19: J31, J32 First Serial Interface Configuration

3.19 J33 Ethernet Controller IRQ Signal

Jumper J33 connects the IRQ output of the Ethernet controller with either port P2.15 of the microcontroller or with pin X1A50 of the phyCORE connector. In the latter case, it should be noticed that the /CS1 signal is not available at X1A50.

The following configurations are possible:

IRQ Signal of the Ethernet controller	J33
Ethernet IRQ connected to port P2.15	1+2 and
	3 + 4*
Ethernet IRQ connected to X1A50	1 + 3,
(/CS1 not available at phyCORE-connector)	pads 2 and 4 open

^{* =} Default setting

Table 20: J33 Ethernet Controller IRQ Signal Configuration

3.20 J34 to J37 Compatibility Mode phyCORE-167CR/CS

Jumpers J34 to J37 determine if the phyCORE-167HS/E behaves like the phyCORE-167CR/CS (PCM-009) in terms of pin layout and memory model or if it adheres to the new pin layout standard. This mode is intended to provide an easy migration path for OEM designs using the previous phyCORE-167CR/CS.

Memory Model, /WR and /BHE Signals	J34	J35
Standard:	$1 + 2^*$	$1 + 2^*$
μC pin 96 as /WR; μC pin 79 as /BHE		
Compatibility phyCORE-167CR/CS:	2 + 3	2 + 3
μC pin 96 as /WRL; μC pin 79 as /WRH		

Ethernet / UART Signals **	J36	J37
Standard: IRQ_UART at X1A35 and	1+3 and	1 + 3 and
LINK_LED at X1C33	2 + 4*	$2 + 4^*$
Compatibility phyCORE-167CR/CS:		
IRQ_UART at X1C33 and	1+2 and	1+2 and
LINK_LED at X1A35	3 + 4	3 + 4

J34 to J37 Compatibility Mode PCM-009 Table 21:

^{* =} Default setting ** = Compare with pin layout

4 System Configuration

Following a hardware or software reset, the microcontroller starts program execution from address 00:0000H. At this address a jump instruction to an application-specific initialization routine is located. This routine configures certain features of the microcontroller. Initialization is carried out in a privileged mode and completed by an EINIT instruction. After that, access to specific registers and execution of certain instructions are limited.

Although most features of the C167CR/C167CS microcontroller are configured and/or programmed during the initialization routine, other features, which influence program execution, must be configured prior to initialization.

4.1 System Startup Configuration

The system startup configuration sets the features of the microcontroller that have a direct influence on program execution and, hence, the correct execution of the initialization routine as well. Of particular importance to the system startup configuration are the characteristics of the external bus interface which supports the module's memory (for example data width, multiplexed- or demultiplexed mode).

During the system startup configuration, certain pins comprising port P0 are latched by the controller during the reset procedure. The signal level on the corresponding input pins configures the resulting characteristics of the controller. The system startup configuration can be set by connecting desired pins at port 0 with a pull-down resistor (resulting in logical 0), or by leaving the connections open (resulting in logical 1).

A 4.7 k Ω pull-down resistor is recommended, although the resistor value is also dependent upon the external circuitry that is connected to the data bus of the module.

The individual pins of port P0 have the following functions:

F	Function of port P0 during system reset (high byte)						
Bit H7	Н6	Н5	H4	Н3	H2	H1	Bit H0
C	LKCFG		SAL	SEL	CSS	SEL	WRC
R31,	R29,	R28	R27	R26	R25	R24	
1	1	1	$O(1^{1})$) 0	1	1	1

	Function of port P0 during system reset (low byte)						
Bit L7	L6	L5	L4	L3	L2	L1	Bit L0
BUST	BUSTYP SMOD R22 R21				ADP	EMU	
1		Pin 21B		Pin 20B	Pin 20A	Pin 19A	Pin 18B

Table 22: Functional Settings on Port P0 for System Startup Configuration

In order to ensure proper functioning of the microcontroller, reserved pins must remain at high-level (logical 1).

Configuration on these pins must not be changed.

[:] On modules with a memory configuration featuring 2 MByte Flash memory (PCM-018-x3x) the register SALSEL must be configured with the values 1 (H4) 0 (H3).

The following table provides detailed comments to these system startup functions:

Name	Value	Function	Comment
CLKCFG	1 1 1*	CPU clock = ext. clock * 4	defines CPU clock
	110	CPU clock = ext. clock * 3	
	101	CPU clock = ext. clock * 2	
	100	CPU clock = ext. clock * 5	
	0 1 1	CPU clock = ext. clock * 1	
	$0\ 1\ 0^{1}$	CPU clock = ext. clock * 1.5	
	$0\ 0\ 1^{1}$	CPU clock = ext. clock $*$ 0.5	
	$0\ 0\ 0^{1}$	CPU clock = ext. clock $*$ 2.5	
SALSEL	1 1	address lines A16A17,	defines function of
		I/O pins P4.2P4.7	port pins P4.0P4.7
	$1 \ 0^{23}$	address lines A16A23,	
		no I/O pins	
	0 1	no address lines,	
		I/O pins P4.0P4.7	
	$0 \ 0^2$	address lines, A16A19,	
		I/O pins P4.4P4.7	
CSSEL	0 0	Chip Selects /CS0/CS2,	defines function of
		I/O pins P6.3P6.4	port pins P6.0P6.4
	1 0	no Chip Selects,	
		I/O pins P6.0P6.4	
	0 1	Chip Selects /CS0/CS1,	
		I/O pins P6.2P6.4	
	1 1	Chip Selects /CS0/CS4,	
		no I/O pins	
WRC	0	/WRL and /WRH	defines function of
	1	/WR and /BHE	pins /WR and P3.12

1: These configurations are only possible with an Infineon C167CS.

^{2:} On modules with a memory configuration featuring 2 MByte Flash memory (PCM-009-x3x) the register SALSEL must be configured with the values 1 (H4) 0 (H3).

^{3:} **Note:** If the C167CR controller populates the phyCORE module, using the CAN interface reduces the available address space to 1 MByte for each /CS signal.

Name	Value	Function	Comment
BUSTYP	1 1	16-bit multiplexed bus	defines bus inter-
			face
	10	16-bit demultiplexed bus	for /CS0
			(BUSCON0)
	0 1	8-bit multiplexed bus	
	0 0	8-bit demultiplexed bus	
BSL	1	Bootstrap loader inactive	
	0	Bootstrap loader active	
ADP	1	adapter mode inactive	
	0	adapter mode active	
EMU	1	emulation mode inactive	
	0	emulation mode active	

Table 23: System Startup Configuration Registers

Default system startup configuration of the phyCORE-167HS/E

The initial setting of the system startup configuration can be modified during the initialization routine. Certain functions can not be configured during startup, such as selection of the number of wait states for individual memory devices and Chip Select signals, as well as the location of these devices within the controller's address space.

Several software development tools utilize a special file which allows easy definition of system settings. This configuration file can be easily included in the translation and link procedures (such as the *start167.a66* used within the Keil software development tool chain).

5 Memory Models

The C167CR/C167CS controller provides up to five Chip Select signals at port P6 for easy selection of external peripherals or memory banks. Depending on the number of memory devices installed on the phyCORE-167HS/E, up to three Chip Select signals are used internally. /CS0 (P6.0) selects the Flash memory installed on U1 with a total memory of either 256 kByte, 512 kByte, 1 MByte or 2 MByte. The external data memory consists of two RAM banks at U2 and U3. These spaces can house memory devices of 512 kByte in an SO44 package. /CS1 (P6.1) selects the RAM bank on U2 while /CS3 (P6.3) selects the optional second RAM at U3. /CS2 (P6.2) selects the external UART at U7. If the optional Ethernet controller populates the module at U23, then /CS4 (P6.4) can be used to control this device.

The Chip Select signals must be enabled during reset (refer to section 4). The assignment of the Chip Select signals to specific address areas is done with the corresponding ADDRESELx and BUSCONx register. Note that ADDRESELx must be configured prior activating of the Chip Select signal with register BUSCONx. Ensure that the memory areas do not overlap in order to avoid conflicts when accessing the desired code or data memory. Program code must remain accessible via /CSO.

Prior to definition of the ADDRESELx and the BUSCONx register, only /CS0 (P6.0 connected to Flash bank 0) is active in the entire address space and remains active for all areas not assigned to another Chip Select signal.

To run the controller without wait states, memory devices with 15 ns access time (at 40 MHz CPU clock) must be installed.

In this case, the bus cycle time is 50 ns at 40 MHz CPU clock. The read/write delay should be always active (refer to the C167CR/C167CS User's Manual / Data Sheet for more information).

The following examples contain two configurations of the controller's memory areas given the standard memory devices populating the phyCORE-167HS/E. These examples match the needs of most standard applications.

Example a)

ADDRESEL1:	2007h =	address range 20:0000h - 20:FFFFh		
		(512 kByte RAM bank at U2)		
ADDRESEL2:	2800h =	address range 28:0000h - 28:0FFFh		
		(4 kByte address space for ext. UART U7)		
ADDRESEL3:	3007h =	address range 30:0000h – 37:FFFFh		
		(optional 512 kByte RAM bank at U3)		
ADDRESEL4:	3800h =	address range 38:0000h – 38:0FFFh		
		(optional 4 kByte address space for Ethernet at U23)		
BUSCON0:	04ACh:	bus active for /CS0 (Flash bank U1)		
BUSCON1:	04AFh:	bus active for /CS1 (RAM bank U2)		
BUSCON2:	042Bh:	bus active for /CS2 (ext. UART U7)		
BUSCON3:	04AFh:	bus active for /CS3 (optional RAM bank U3)		
BUSCON4:	0688h:	bus active for /CS4 (optional Ethernet U23)		
BUSCON0:	for 55 ns	Flash memory devices (3 wait states, read/write delay,		
	no tristate	e, normal ALE, 16-bit demultiplexed)		
BUSCON1:	for 15 ns	RAM memory devices (0 wait states, read/write delay,		
	no tristate	e, normal ALE, 16-bit demultiplexed)		
BUSCON2:	for UAR	RT (4 wait states, read/write delay, no tristate, normal		
		it demultiplexed)		
BUSCON3:	-	onal 15 ns RAM memory devices (0 wait states,		
		e delay, no tristate, normal ALE, 16-bit demultiplexed)		
BUSCON4:	-	nal Ethernet area (8 wait states, read/write delay, tristate		
	wait 300	ns, lengthend ALE, 16-bit demultiplexed)		

Example b)

ADDRESEL1: 0007h = address range 00:0000h - 07:FFFFh

(512 kByte RAM bank at U2)

ADDRESEL2: 2800h = address range 28:0000h - 28:0FFFh

(4 kByte address space for external UART at U7)

ADDRESEL3: 3007h = address range 30:0000h - 37:FFFFh

(optional 512 kByte RAM bank at U3)

ADDRESEL4: 3800h = address range 38:0000h - 38:0FFFh

(optional 4 kByte address space for Ethernet at U23)

BUSCON0: 04ACh: bus active for /CS0 (Flash bank U1)
BUSCON1: 04AFh: bus active for /CS1 (RAM bank U2)
BUSCON2: 042Bh: bus active for /CS2 (external UART)

BUSCON3: 04AFh: bus active for /CS3 (optional RAM bank U3) BUSCON4: 0688h: bus active for /CS4 (optional Ethernet U23)

BUSCON0: for 55 ns Flash memory devices (3 wait states, read/write delay,

no tristate, normal ALE, 16-bit demultiplexed)

BUSCON1: for 15 ns RAM memory devices (0 wait states, read/write delay,

no tristate, normal ALE, 16-bit demultiplexed)

BUSCON2: for UART (4 wait states, read/write delay, no tristate, normal

ALE, 8-bit demultiplexed)

BUSCON3: for optional 15 ns RAM memory devices (0 wait states,

read/write delay, no tristate, normal ALE, 16-bit demultiplexed)

BUSCON4: for optional Ethernet area (8 wait states, read/write delay, tristate

wait 300 ns, lengthend ALE, 16-bit demultiplexed)

Note:

If the optional second RAM bank at U3 and/or the Ethernet controller at U23 are not populated on your phyCORE-167HS/E you can use the corresponding Chip-Select signals for control of external peripherals. In this case it is important to check the settings listed above (e.g. wait states and bus type) to make sure they match the parameters of your connected device.

_	Example a)	_	Example b)
FF:FFFFh		FF:FFFFh	
	mirror images		mirror images
	of Flash U1 in this area *		of Flash U1 In this area *
39:1000h		39:1000h	i lasii 0 i iii tilis alea
38:0FFFh	Optional 4 kByte	38:0FFFh	Ontional 4 kPyto
00.011111	Ethernet U23	00.011111	Optional 4 kByte
20.00006			Ethernet U23
38:0000h 37:FFFFh	P6.4 (/CS4)	38:0000h	P6.4 (/CS4)
37.555511	Optional 512 kByte RAM Bank U3	37:FFFFh	Optional 512 kByte
	P6.3 (/CS3)		RAM Bank U3
30:0000h	F 0.3 (/C33)	30:0000h	P6.3 (/CS3)
2F:FFFFh	mirror images	2F:FFFFh	mirror images
00.40001	of Flash U1 In this area *		of
28:1000h		28:1000h	Flash U1 In this area *
28:0FFFh	4 kByte external UART U7	28:0FFFh	4 kByte external UART U7
28:0000h	P6.2 (/CS2)	28:0000h	P6.2 (/CS2)
27:FFFFh	512 kByte	2F:FFFFh	
	RAM Bank U2		
20:0000h	P6.1 (/CS1)		mirror images of Flash U1 In this area **
1F:FFFFh			riash o'i in this area
	mirror images of		
	Flash U1 In this area **	0C:0000h	
		0B:FFFFh	256 kByte
			FLASH Bank U1
04:0000h		08:0000h	P6.0 (/CS0)
03:FFFFh	256 kByte	07:FFFFh	512 kByte
	FLASH Bank U1		RAM Bank U2
00:0000h	P6.0 (/CS0)	00:0000h	P6.1 (/CS1)

Figure 8: Memory Model Examples

- **: All address space that is not configured for /CS1 /CS4 access is mapped to the /CS0 space by default. This results in mirror images in the corresponding areas, indicated by the following symbol:
- *: The number of mirrored images in this area depends on the physical Flash memory size. For example, a 256 kByte Flash at U1 results in eight mirror images, 512 kByte Flash at U1 results in four mirror images, 1 MByte Flash at U1 results in two mirror images, if a 2 MByte Flash device is installed there will be **NO** mirror images.

5.1 Bus Timing

To enable connection of external memory components at 40 MHz CPU clock speed, the BUSCON register should be configured as follows:

BUSCON0: 04ACh, controls the external Flash at U1 via /CS0:

- 3 wait states (MCTC0)
- read/write delay (RWDC0)
- no tristate (MTTC0)
- normal ALE (ALECTL0)
- 16-bit demultiplexed (BTYP)
- address /CSx active (BUSACT0)

BUSCON1: 04AFh, controls the external RAM at U2 via /CS1:

- 0 wait states (MCTC1)
- read/write delay (RWDC1)
- no tristate (MTTC1)
- normal ALE (ALECTL1)
- 16-bit demultiplexed (BTYP)
- address /CSx active (BUSACT1)

BUSCON2: 042Bh, controls the external UART at U7 via /CS2:

- 4 wait states (MCTC2)
- read/write delay (RWDC2)
- no tristate (MTTC2)
- normal ALE (ALECTL2)
- 8-bit demultiplexed (BTYP)
- address /CSx active (BUSACT2)

BUSCON3: 04AFh, controls the external RAM at U3 via /CS3 (optional):

- 0 wait states (MCTC3)
- read/write delay (RWDC3)
- no tristate (MTTC3)
- normal ALE (ALECTL3)
- 16-bit demultiplexed (BTYP)
- address /CSx active (BUSACT3)

BUSCON4: 0688h, controls the Ethernet controller at U23 via /CS4 (optional):

- 8 wait states (MCTC4)
- read/write delay (RWDC4)
- 1 tristate (MTTC4)
- lengthened ALE (ALECTL4)
- 16-bit demultiplexed (BTYP)
- address /CSx active (BUSACT4)

This configuration is valid for all standard memory devices mounted on the phyCORE-167HS/E running at 40 MHz CPU clock.

6 Serial Interfaces

6.1 RS-232 Interface

One RS-232 transceiver is located on the phyCORE-167HS/E at U6. This device converts the signal levels for the P3.11/RxD0 and P3.10/TxD0 lines, as well as those of the second serial interface, P3.1/RxD1 and P3.0/TxD1 from TTL level to RS-232 level. Use of the optional UART on U7 requires changing the jumper settings for J13 and J14 to 1+2 (*refer to section 3.10*) in order to route the RxD and TxD signals to the transceiver. As an alternative, a second RS-232 interface can be established by software emulation on port P3.0 and P3.1 with J13 and J14 closed at position 2+3.

The RS-232 interface enables connection of the module to a COM port on a host-PC. In this instance the RxD0 line of the transceiver is connected to the TxD line of the COM port; while the TxD0 line is connected to the RxD line of the COM port. The Ground potential of the phyCORE-167HS/E circuitry needs to be connected to the applicable Ground pin on the COM port as well.

The microcontroller's on-chip UART does not support handshake signal communication. However, depending on user needs, handshake communication can be software emulated using port pins on the microcontroller. Use of an RS-232 signal level in support of handshake communication requires use of an external RS-232 transceiver not located on the module.

If the module is populated with a UART device at U7, a supplemental RS-232 transceiver can be mounted at position U5. This latter device enables RS-232 signal conversion of the handshake signals supported by the external UART.

Note:

Jumpers J31 and J32 must remain closed on the phyCORE-167HS/E. If they are open, no serial communication is possible, hence PHYTEC FlashTools or the BOOT monitor will not function properly.

6.2 CAN Interface

The phyCORE-167HS/E is designed to house two CAN transceivers at U11 and U12 (either PCA82C251 or Si9200EY). The CAN bus transceiver devices support signal conversion of the CAN transmit (CANTx) and receive (CANRx)lines. The CAN transceiver supports up to 110 nodes on a single CAN bus. Data transmission occurs with differential signals between CANH and CANL. A Ground connection between nodes on a CAN bus is not required, yet is recommended to better protect the network from electromagnetic interference (EMI). In order to ensure proper message transmission via the CAN bus, a 120 Ohm termination resistor must be connected to each end of the CAN bus.

For larger CAN bus systems, an external opto-coupler should be implemented to galvanically separate the CAN transceiver and the phyCORE-167HS/E. This requires the CANTx and CANRx lines to be separated from the on-board CAN transceivers by opening Jumpers J16, J17, J18, and J19. For connection of the CANTx and CANRx lines to an external transceiver we recommend using a Hewlett Packard HCPL06xx or a Toshiba TLP113 HCPL06xx fast opto-coupler. Parameters for configuring a proper CAN bus system can be found in the DS102 norms from the CiA¹ (CAN in Automation) User and Manufacturer's Interest Group.

Note:

If the C167CR controller populates the phyCORE module, using the CAN interface reduces the available address space to 1 MByte for each /CS signal.

1

^{1:} CiA: CAN in Automation. Founded in March 1992, CiA provides technical, product and marketing information with the aim of fostering Controller Area Network's image and providing a path for future developments of the CAN protocol.

7 Real-Time Clock RTC-8564 (U10)

For real-time or time-driven applications, the phyCORE-167HS/E is equipped with an RTC-8564 Real-Time Clock at U10. This RTC device provides the following features:

- Serial input/output bus (I²C)
- Power consumption

Bus active: max. 50 mA Bus inactive, CLKOUT = 32 kHz : max. 1.7 μ A Bus inactive, CLKOUT = 0 kHz : max. 0.75 μ A

- Clock function with four year calendar
- Century bit for year 2000-compliance
- Universal timer with alarm and overflow indication
- 24-hour format
- Automatic word address incrementing
- Programmable alarm, timer and interrupt functions

If the phyCORE-167HS/E is equipped with a battery, the Real-Time Clock runs independently of the board's power supply.

Programming the Real-Time Clock is done via the I^2C bus (address 0xA2 = 10100010), which is connected to port P3.4 (SCL) and port P3.3 (SDA). The Real-Time Clock also provides an interrupt output that extends to port P2.9 via Jumper J11. An interrupt occurs in case of a clock alarm, timer alarm, timer overflow and event counter alarm. An interrupt must be cleared by software. With the interrupt function, the Real-Time Clock can be utilized in various applications. For more information on the features of the RTC-8564, refer to the corresponding Data Sheet.

Note:

After connection of the supply voltage, or after a reset, the Real-Time Clock generates **no** interrupt. The RTC must first be initialized (*see RTC Data Sheet for more information*)

8 Serial EEPROM/FRAM (U9)

The phyCORE-167HS/E is populated with a non-volatile memory with a serial interface (I²C interface) to store configuration data. According to the memory configuration of the module, an EEPROM (4 to 32 kByte) or FRAM can be mounted at U9.

A description of the I^2C memory protocol of the specific memory component at U9 can be found in the respective Data Sheet.

Table 24 gives an overview of the memory components that can be used at U9 at the time of printing of this manual.

Device Type	Size	Component	Manufacturer
EEPROM	4 kByte	24WC32	Catalyst, Microchip
	8 kByte	24WC64	Catalyst, Microchip
	32 kByte	24WC256	Microchip
FRAM	512 Byte	FM24C04	Ramtron
	8 kByte	FM24C64	Ramtron

Table 24: Memory Device Options for U9

Various available EEPROM/FRAM types provide a write protection function¹. Jumper J12 is used to activate this function. If this jumper is closed, then pin 7 of the serial EEPROM/FRAM is connected to VCC.

Write Protection EEPROM/FRAM	J12
Write protection of EEPROM/FRAM deactivated	open or $2 + 3*$
Write protection of EEPROM/FRAM activated	1 + 2

^{* =} Default setting

Table 25: EEPROM/FRAM Write Protection

Jumper J15 configures the address of the serial EEPROM/FRAM. The default configuration (J15 = 2+3) sets the address to 0xA8.

EEPROM/FRAM Address	J15
0xA8	2 + 3*
0xAC	1 + 2

^{* =} Default setting

Table 26: EEPROM/FRAM Address

_

^{1:} Refer to the corresponding EEPROM/FRAM Data Sheet for more information on the write protection function.

9 Remote Supervisory Chip (U8)

Space U8 is intended to be populated by a Remote Supervisory Chip¹. This IC can initiate a boot sequence via a serial interface, such as RS-232 or CAN. The RSC can start the PHYTEC FlashTools without requiring a manual release of the boot sequence on the phyCORE module applied via a BOOT jumper or button. This enables a remote controlled software update of the on-board Flash device.

This function can be controlled by various interfaces. Solder Jumpers J20A and J20B configure the remote download source. The Remote Supervisory Chip is under development and not available at this time. Accordingly, Jumpers J20A and J20B remain open in the default configuration. *Refer to section 3.13 for details on jumper settings for J20A/J20B*.

This feature will be available on future phyCORE modules.

^{1:} This feature is under development and not available at this time.

10 Flash Memory (U1)

Use of Flash as non-volatile memory on the phyCORE-167HS/E provides an easily reprogrammable means of code storage. The following Flash devices can populate the phyCORE-167HS/E:

Manufacturer		AMD	Fujitsu	Macronix	Hynix (Hyundai)	ST Micro
Manufacturing Code		01	04	C2	AD	20
Type	Capacity	Device	Device	Device	Device	Device
		Code	Code	Code	Code	Code
29F200T	256 kByte	2251	2251	2251	2251	00D3
29F400T	512 kByte	2223	2223	2223	2223	00D5
29F800T	1 MByte	22D6	22D6	22D6	22D6	00EC
29F160T	2 MByte	22D2	22D2	22D2	22D2	22CC
29F200B	256 kByte	2257	2257	2257	2257	00D4
29F400B	512 kByte	22AB	22AB	22AB	22AB	00D6
29F800B	1 MByte	2258	2258	2258	2258	0058
29F160B	2 MByte	22D8	22D8	22D8	22D8	224B

Table 27: Flash Memory Types and Manufacturers

These Flash devices are programmable with 5 V. No dedicated programming voltage is required.

Use of a Flash device as the only code memory results in no or only a limited usability of the Flash memory as non-volatile memory for data. This is due to the internal structure of the Flash device as, during the Flash-internal programming process, the reading of data from Flash is not possible. Hence, for Flash programming, program execution must be transferred out of Flash (such as into von Neumann RAM). This usually equals the interruption of a "normal" program execution cycle.

As of the printing of this manual, Flash devices generally have a life expectancy of at least 100.000 erase/program cycles.

11 Battery Buffer and Voltage Supervisor Chip (U13)

The battery that buffers the memory is not essential to the functioning of the phyCORE-167HS/E. However, this battery buffer embodies an economical and practical means of storing non-volatile data. It is necessary to preserve data from the Real-Time Clock in case of a power failure.

The VBAT input at pin X1C6 of the board is provided for connecting the external battery. The negative polarity pin on the battery must be connected to GND on the phyCORE-167HS/E. As of the printing of this manual, a lithium battery is recommended as it offers relatively high capacity at low discharge. In the event of a power failure at VCC, the RTC will be buffered by a connected battery via VBAT. The RTC device is generally supplied via VPD in order to preserve data by means of the battery back-up in the absence of a power supply via VCC.

The Voltage Supervisor Chip populating U13 controls switching between VCC supply and the back-up battery. *The basic characteristics of this IC are described in the appropriate Data Sheet, which is available on the Spectrum CD.*

12 CS8900A Ethernet Controller

12.1 Fundamentals

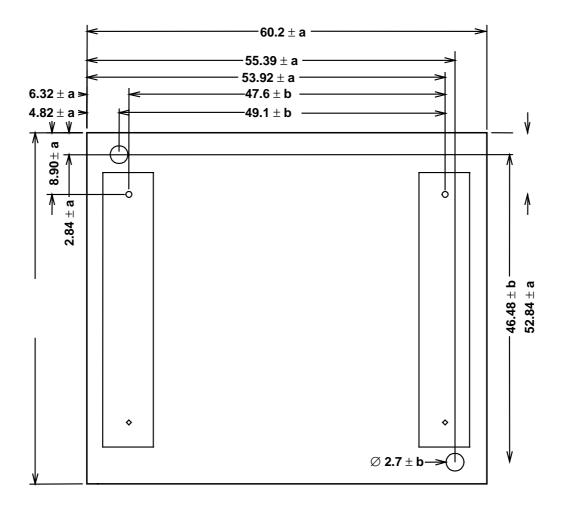
The CS8900A is a IEEE 802.3 Single-Chip Ethernet-Controller that is operated in memory mode on the phyCORE-167HS/E. The configuration data for the Ethernet controller are stored in a EEPROM located at U22.

The CS8900A Ethernet controller provides the following features:

- power consumption: 55 mA
- industrial temperature range available (CS8900A-IQ)
- I/O- and memory mode
- Full-Duplex operation
- On-chip RAM buffer for transmit and receive frames
- 10 Base-T Port with analog filters (automatic polarization recognition and correction)
- AUI-Port for 10Base2, 10Base5 and 10Base-F
- LED driver for LINK status and LAN activity
- Sleep mode

Additional technical data for the CS8900A Ethernet controller are available in the corresponding data sheet.

12.2 Memory Mode


Following a hardware reset the CS8900A Ethernet controller is in I/O mode. In order to render the chip into memory mode the following settings are required in the EEPROM U22:

register
$$0116h$$
 bit $A = 1$

The base address of the CS8900A is set in register 002Ch. It is recommended to configure the value "0000 0000h".

13 Technical Specifications

The physical dimensions of the phyCORE-167HS/E are represented in *Figure 9*. The module's profile is ca. 6 mm thick, with a maximum component height of 2.0 mm on the backside of the PCB and approximately 2.5 mm on the front side. The board itself is approximately 1.6 mm thick.

Tolerance	a	b
in [mm]	0.20	0.05

Figure 9: Physical Dimensions

Additional specifications:

• Dimensions: 60 mm x 53 mm

• Weight: approximately 25 g with all

optional components mounted on

the circuit board

• Storage temperature: -40°C to +90°C

• Operating temperature: standard: 0° C to $+70^{\circ}$ C

extended: -40° C to $+90^{\circ}$ C

• Humidity: 95 % r.F. not condensed

• Operating voltage: $5 \text{ V} \pm 5 \%$, VBAT $3 \text{ V} \pm 20 \%$

• Power consumption: Conditions:

maximum 300 mA VCC = 5 V, VBAT = 0 V,

typical 220 mA 256 kByte RAM, 10 MHz quartz,

 20°C

maximum $100 \mu A$ VCC = 0 V, VBAT = 3 V,

typ. 1 µA Real-Time Clock 20°C

These specifications describe the standard configuration of the phyCORE-167HS/E as of the printing of this manual.

14 Hints for Handling the phyCORE-167HS/E

All C167 compatible controllers (C167CR, C167CS) can populate the phyCORE-167HS/E module at U4. Please note that, if using a C167Cx derivative with an active CAN interface via port 4, only 20 external address lines (A0...A19) and 1 MByte of address space is available on the module. These constraints can be avoided by relocating the CAN interface to port 8¹ (see controller User's Manual and Data Sheet for details).

In order to activate the address lines A18...A23 (for more than 256 kByte Flash) the configuration resistors at data lines D12 and D11 of the module must be pulled to GND level (see section 4, "System Configuration").

The address and data bus on the module is not buffered. To connect external components to the data/address bus, as well as the control lines (/RD, /WR), an external buffer (i.e. 74AHCT245) between the modul and the peripheral components should be installed.

The data bus D0...15 (Port 0) should be connected with a $100 \text{ k}\Omega$ pull-up resistor against VCC. Furthermore, precautions should be taken to allow connection of configuration resistor against GND directly to port 0 (pin 0...15). This enables startup of the C167Cx in various configurations since these specific pins are latched during reset (see controller User's Manual and section 4, "System Configuration").

The /NMI input is connected with a pull-up resistor (10 k Ω) against VCC. This enables activation of the NMI signal by means of a high-low signal transition. This can be realized with a push button (switching to GND) and is useful during software development if e.g. a Monitor program is used (see Monitor User's Manual).

This function is only available with Infineon's C167CS microcontroller.

Removal of various components, such as the microcontroller and the standard quartz, is not advisable given the compact nature of the module. Should this nonetheless be necessary, please ensure that the board as well as surrounding components and sockets remain undamaged while desoldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. Carefully heat neighboring connections in pairs. After a few alternations, components can be removed with the solder-iron tip. Alternatively, a hot air gun can be used to heat and loosen the bonds.

15 The phyCORE-167HS/E on the phyCORE Development Board HD200

PHYTEC Development Boards are fully equipped with all mechanical and electrical components necessary for the speedy and secure start-up and subsequent communication to and programming of applicable PHYTEC Single Board Computer (SBC) modules. Development Boards are designed for evaluation, testing and prototyping of PHYTEC Single Board Computers in labratory environments prior to their use in customer designed applications.

15.1 Concept of the phyCORE Development Board HD200

The phyCORE Development Board HD200 provides a flexible development platform enabling quick and easy start-up and subsequent programming of the phyCORE-167HS/E Single Board Computer module. The Development Board design allows easy connection of additional expansion boards featuring various functions that support fast and convenient prototyping and software evaluation.

This modular development platform concept is depicted in *Figure 10* and includes the following components:

- The actual **Development Board** (1), which offers all essential components and connectors for start-up including: a power socket enabling connection to an **external power adapter** (2) and **serial interfaces** (3) of the SBC module at DB-9 connectors (depending on the module, up to two RS-232 interfaces and up to two RS-485 or CAN interfaces).
- All of the signals from the SBC module mounted on the Development Board extend to two mating receptacle connectors. A strict 1:1 signal assignment is consequently maintained from the phyCORE-connectors on the module to these expansion connectors. Accordingly, the pin assignment of the expansion bus (4) depends entirely on the pinout of the SBC module mounted on the Development Board.

- As the physical layout of the expansion bus is standardized across all applicable PHYTEC Development Boards, we are able to offer various expansion boards (5) that attach to the Development Board at the expansion bus connectors. These modular expansion boards offer supplemental I/O functions (6) as well as peripheral support devices for specific functions offered by the controller populating the SBC module (9) mounted on the Development Board.
- All controller and on-board signals provided by the SBC module mounted on the Development Board are broken out 1:1 to the expansion board by means of its **patch field** (7). The required connections between SBC module / Development Board and the expansion board are made using **patch cables** (8) included with the expansion board.

Figure 10 illustrates the modular development platform concept:

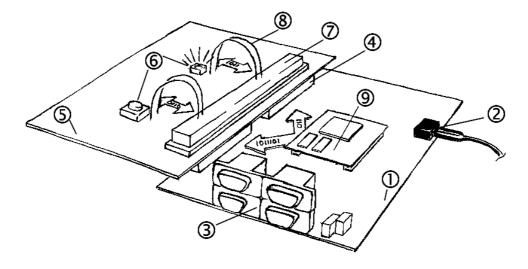


Figure 10: Modular Development and Expansion Board Concept with the phyCORE-167HS/E

The following sections contain specific information relevant to the operation of the phyCORE-167HS/E mounted on the phyCORE Development Board HD200. For a general description of the Development Board, please refer to the corresponding Development Board Hardware Manual.

15.2 Development Board HD200 Connectors and Jumpers

15.2.1 Connectors

As shown in *Figure 11*, the following connectors are available on the phyCORE Development Board HD200:

- X1- low-voltage socket for power supply connectivity
- X2- mating receptacle for expansion board connectivity
- P1- dual DB-9 sockets for serial RS-232 interface connectivity
- P2- dual DB-9 connectors for CAN or RS-485 interface connectivity
- X4- voltage supply for external devices and subassemblies
- X5- GND connector (for connection of GND signal of measuring devices such as an oscilliscope)
- X6- phyCORE-connector enabling mounting of applicable phyCORE modules
- X7 connector for Ethernet transformer module EAD-001
- U9/U10- space for an optional silicon serial number chip
- BAT1- receptacle for an optional battery

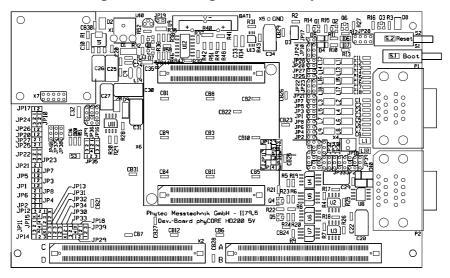


Figure 11: Location of Connectors on the phyCORE Development Board HD200

Please note that all module connections are not to exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller User's Manual/Data Sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.

15.2.2 Jumpers on the phyCORE Development Board HD200

Peripheral components of the phyCORE Development Board HD200 can be connected to the signals of the phyCORE-167HS/E by setting the applicable jumpers.

The Development Board's peripheral components are configured for use with the phyCORE-167HS/E by means of insertable jumpers. If no jumpers are set, no signals connect to the DB-9 connectors, the control and display units and the CAN transceivers. The Reset input on the phyCORE-167HS/E directly connects to the Reset button (S2). *Figure 12* illustrates the numbering of the jumper pads, while *Figure 13* indicates the location of the jumpers on the Development Board.

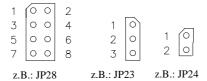


Figure 12: Numbering of Jumper Pads

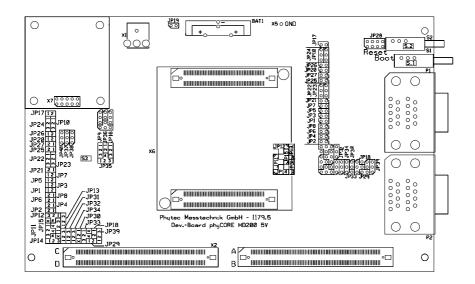


Figure 13: Location of the Jumpers (View of the Component Side)

Figure 14 shows the factory default jumper settings for operation of the phyCORE Development Board HD200 with the standard phyCORE-167HS/E (standard = C167CS controller, external UART and Ethernet controller populated, use of two RS-232 interfaces, the CAN interfaces, LED D3, the Boot button on the Development Board). Jumper settings for other functional configurations of the phyCORE-167HS/E module mounted on the Development Board are described in section 15.3.

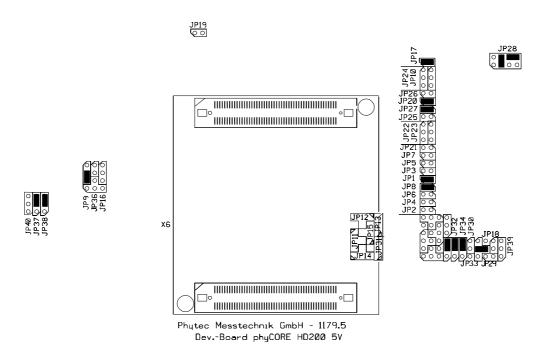


Figure 14: Default Jumper Settings of the phyCORE Development Board HD200 with phyCORE-167HS/E

15.2.3 Unsupported Features and Improper Jumper Settings

The following table contains improper jumper settings for operation of the phyCORE-167HS/E on a phyCORE Development Board HD200. Functions configured by these settings are not supported by the phyCORE module.

Supply Voltage:

The phyCORE Development Board HD200 supports two main supply voltages for the start-up of various phyCORE modules. When using the phyCORE-167HS/E, only one main supply voltage is required, VCC with 5 V. The connector pins for a second supply voltage on the phyCORE-167HS/E are not defined.

Jumper	Setting	Description
JP16	1+2 or	VCC2 routed to pins X1C4 and X1C5 on the
	2 + 3	phyCORE-167HS/E

Table 28: Improper Jumper Setting for JP16 on the Development Board

No RS-485 interface:

DB-9 plug P2B on the Development Board can be configured as RS-485 interface as an alternative to a possible second CAN interface. The phyCORE-167HS/E does not support an RS-485 interface. For this reason the corresponding jumper settings should never be used.

Jumper	Setting	Description
JP30	closed	TxD signal for second serial interface routed to
		pin 8 on the DB-9 plug P2B
JP33	1 + 2	RxD signal for second serial interface routed to
		pin 2 on the DB-9 plug P2B

Table 29: Improper Jumper Setting for JP30/33 on the Development Board

Reference Voltage Source for A/D Converter

Pins X1C42, X1C47, X1D39, X1D44 and X1D49 (VAGND) of the phyCORE-167HS/E are solely connected with the phyCORE Development Board HD200 GND potential. This makes a separate supply with an alternative VAGND potential impossible. Jumper J5 on the phyCORE-167HS/E is therefore without function when the module is mounted on a Development Board HD200. Free definition of the VAGND potential is however available in a customer application board.

15.3 Functional Components on the phyCORE Development Board HD200

This section describes the functional components of the phyCORE Development Board HD200 supported by the phyCORE-167HS/E and appropriate jumper settings to activate these components. Depending on the specific configuration of the phyCORE-167HS/E module, alternative jumper settings can be used. These jumper settings are different from the factory default settings as shown in *Figure 14* and enable alternative or additional functions on the phyCORE Development Board HD200 depending on user needs.

15.3.1 Power Supply at X1

Caution:

Do not use a laboratory adapter to supply power to the Development Board! Power spikes during power-on could destroy the phyCORE module mounted on the Development Board! Do not change modules or jumper settings while the Development Board is supplied with power!

Permissible input voltage: +/-5 VDC regulated.

The required current load capacity of the power supply depends on the specific configuration of the phyCORE-167HS/E mounted on the Development Board as well as whether an optional expansion board is connected to the Development Board. An adapter with a minimum supply of 500 mA is recommended.

Jumper	Setting	Description
JP9	2 + 3	5 V main supply voltage
		to the phyCORE-167HS/E

Table 30: JP9 Configuration of the Main Supply Voltage VCC

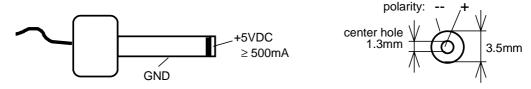


Figure 15: Connecting the Supply Voltage at X1

When using this function, the following jumper settings are not allowed:

Jumper	Setting	Description
JP9	1 + 2	3.3 V as main supply voltage
		for the phyCORE-167HS/E
	open	phyCORE-167HS/E not connected to
		main supply voltage

Table 31: JP9 Improper Jumper Settings for the Main Supply Voltage

Setting Jumper JP9 to positions 1+2 configures a main power supply to the phyCORE-167HS/E of 3.3 V which could destroy the module. If Jumper JP9 is open, no main power supply is connected to the phyCORE-167HS/E. This jumper setting should therefore not be used.

15.3.2 Activating the Bootstrap Loader

The Infineon C167Cx microcontroller contains an on-chip Bootstrap Loader that provides basic communication and programming functions. The combination of this Bootstrap Loader and the corresponding FlashTools software installed on the PC allows for Flash programming with application code via an RS-232 interface. The Bootstrap Loader is also used by other third party toolpartner software such as the Monitor166 from Keil or CrossView Pro ROM monitor from Altium for debugging functions.

In order to start the on-chip Bootstrap Loader on the phyCORE-167HS/E, the data line D4 of the microcontroller must be connected to a low-level signal at the time the Reset signal changes from its active to the inactive state. This is achieved by applying a high-level signal at pin X1C9 of the phyCORE-167HS/E as the Boot input is high-active.

The phyCORE Development Board HD200 provides three different options to activate the on-chip Bootstrap Loader:

1. The Boot button (S1) can be connected to VCC via Jumper JP28 which is located next the Boot and Reset buttons at S1 and S2. This configuration enables start-up of the on-chip Bootstrap Loader if the Boot button is pressed during a hardware reset or power-on.

Jumper	Setting	Description
JP28	6 + 8	Boot button (in conjunction with Reset button
	and	or connection of the power supply) starts the
	3 + 4	Bootstrap Loader on the C167CR/C167CS

Table 32: JP28 Configuration of the Boot Button

2. The Boot input of the phyCORE-167HS/E can also be permanently connected to VCC via a pull-up resistor. This pulls the data line D4 to low level via an on-board circuitry which then starts the Bootstrap Loader. This spares pushing the Boot button during a hardware reset or power-on.

Caution:

In this configuration a regular reset, hence normal start of your application, is not possible. The Bootstrap Loader is started every time. This is useful when using an emulator.

Jumper	Setting	Description
JP28	4 + 6	Boot input connected permanently with VCC via pull-
		up resistor. The Bootstrap Loader is always started with
		Reset button or with connection of the power supply

Table 33: JP28 Configuration of a Permanent Bootstrap Loader Start

3. It is also possible to start the FlashTools via external signals applied to the DB-9 socket P1A. This requires control of the signal transition on the Reset line via pin 7 while a static high-level is applied to pin 4 for the Boot signal.

Jumper	Setting	Description
JP22	2 + 3	Pin 7 (CTS) of the DB-9 socket P1A as Reset signal
		for the phyCORE-167HS/E
JP23	2 + 3	Pin 4 (DSR) of the DB-9 socket P1A as Boot signal
		for the phyCORE-167HS/E
JP10	2 + 3	High-level Boot signal connected with the Boot input
		of the phyCORE-167HS/E

Table 34: JP22, JP23, JP10 Configuration of Boot via RS-232

Caution:

When using this function, the following jumper setting is not allowed:

Jumper	Setting	Description
JP10	1 + 2	Jumper setting generates low-level on Boot input
		of the phyCORE-167HS/E

Table 35: Improper Jumper Settings for Boot via RS-232

15.3.3 First Serial Interface at Socket P1A

Socket P1A is the lower socket of the double DB-9 connector at P1. P1A is connected via jumpers to the first serial interface of the phyCORE-167HS/E. When connected to a host-PC, the phyCORE-167HS/E can be rendered in Bootstrap mode via signals applied to the socket P1A (*refer to section 15.3.2*).

Jumper	Setting	Description
JP20	closed1	Pin 2 of DB-9 socket P1A connected with RS-232
		interface signal TxD0 of the phyCORE-167HS/E
JP21	open	Pin 9 of DB-9 socket P1A not connected
JP22	open	Pin 7 of DB-9 socket P1A not connected
	$2 + 3^2$	Reset input of the module can be controlled via
		RTS signal from a host-PC
JP23	open	Pin 4 of DB-9 socket P1A not connected
	$2 + 3^2$	Boot input of the module can be controlled via
		DTR signal from a host-PC
		(Note: JP10 must be set to position $2 + 3$)
JP24	open	Pin 6 of DB-9 socket P1A not connected
JP25	open	Pin 8 of DB-9 socket P1A not connected
JP26	open	Pin 1 of DB-9 socket P1A not connected
JP27	closed1	Pin 3 of DB-9 socket P1A connected with RS-232
		interface signal RxD0 from the
		phyCORE-167HS/E

Table 36: Jumper Configuration for the First RS-232 Interface

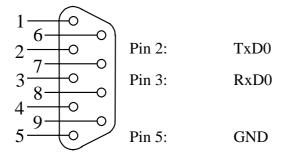


Figure 16: Pin Assignment of the DB-9 Socket P1A as First RS-232 (Front View)

^{1:} This jumper should always be closed because communication with PHYTEC FlashTools requires use of the first serial interface on the phyCORE module.

²: Alternative jumper configuration for additional features (*refer to section 15.3.2*). Not required for standard communication functions.

When using the DB-9 socket P1A as RS-232 interface on the phyCORE-167HS/E the following jumper settings are not functional and could damage the module:

Jumper	Setting	Description
JP20	open	Pin 2 of DB-9 socket P1A not connected, no
		connection to TxD0 signal from phyCORE-167HS/E
JP21	closed	Pin 9 of DB-9 socket P1A connected with port P8.2
		from phyCORE-167HS/E
JP22	1 + 2	Pin 7 of DB-9 socket P1A connected with port P2.15
		from phyCORE-167HS/E
JP23	1 + 2	Pin 4 of DB-9 socket P1A connected with port P8.0
		from phyCORE-167HS/E
JP24	2 + 3	Pin 6 of DB-9 socket P1A connected with VOUT from
		phyCORE-167HS/E
JP25	closed	Pin 8 of DB-9 socket P1A connected with port P2.14
		from phyCORE-167HS/E
JP26	closed	Pin 1 of DB-9 socket P1A connected with port P8.3
		from phyCORE-167HS/E
JP27	open	Pin 3 of DB-9 socket P1A not connected, no
		connection to RxD0 signal from phyCORE-167HS/E

Table 37: Improper Jumper Settings for DB-9 Socket P1A as First RS-232

If an RS-232 cable is connected to P1A, the voltage level on the RS-232 lines could destroy the phyCORE-167HS/E.

15.3.4 Power Supply to External Devices via Socket P1A

The phyCORE Development Board HD200 can be populated by additional components that provide a supply voltage of 5 V at pin 6 of DB-9 socket P1A. This allows for easy and secure supply of external devices connected to P1A. This power supply option especially supports connectivity to analog and digital modems. Such modem devices enable global communication of the phyCORE -167HS/E over the Internet or a direct dial connection.

The following figure shows the location of these components on the Development Board:

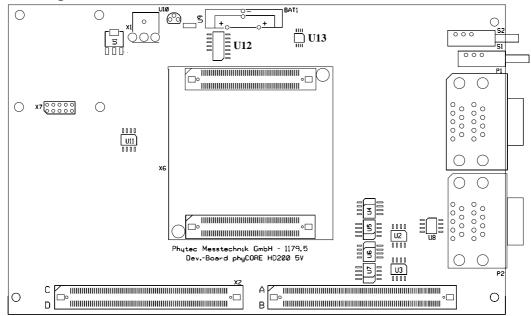


Figure 17: Location of Components at U12 and U13 for Power Supply to External Subassemblies

The components at U12 and U13 guarantee electronic protection against overvoltage and excessive current draw at pin 6 of P1A; in particular:

• Load detection and controlled voltage supply switch-on:

In order to ensure clear detection of the switch-on condition, the connected device should cause a current draw of at least 10 mA at pin 6. The controlled voltage supply switch-on prevents voltage drop off on the phyCORE Development Board HD200.

• Overvoltage Protection:

If the voltage at pin 6 exceeds the limiting value that can be provided by the phyCORE Development Board HD200, the voltage at pin 6 will be switched off immediately. This prevents damage to the phyCORE Development Board HD200 as well as connected modules and expansion boards.

• Overload Protection:

If the current draw at pin 6 exceeds the limiting value of approximately 150 mA, the voltage at pin 6 will be switched off immediately. This prevents damage to the phyCORE Development Board HD200 and its power adapter caused by current overload.

This configuration option provides the following possibility:

Jumper	Setting	Description
JP24	2 + 3	Electronically protected 5 V at pin 6 for supply of
		external devices connected to P1A

Table 38: JP24 Power Supply to External Devices Connected to P1A on the Development Board

15.3.5 Second Serial Interface at Socket P1B

Socket P1B is the upper socket of the double DB-9 connector at P1. P1B is connected via jumpers to the second serial interface of the phyCORE-167HS/E. Depending on the module configuration (*refer to section 3.10*) and the available order option (optional UART populates the module, PCM-018-Cx-U) three different options are available for configuration of socket P1B:

1. The phyCORE-167HS/E is **NOT** populated with the optional **UART** at U7 (standard PCM-018-Cx) and no serial interface emulation with port pins P3.0 and P3.1.

Jumper	Setting	Description
JP1	open	Pin 2 of DB-9 socket P1B not connected
JP2	open	Pin 9 of DB-9 socket P1B not connected
JP3	open	Pin 7 of DB-9 socket P1B not connected
JP4	open	Pin 4 of DB-9 socket P1B not connected
JP5	open	Pin 6 of DB-9 socket P1B not connected
JP6	open	Pin 8 of DB-9 socket P1B not connected
JP7	open	Pin 1 of DB-9 socket P1B not connected
JP8	open	Pin 3 of DB-9 socket P1B not connected

Table 39: Jumper Configuration of the DB-9 Socket P1B (no second RS-232) In this configuration no second serial interface is available.

When using the DB-9 socket P1B with the configuration of the phyCORE-167HS/E as described above, the following jumper settings are not functional and could damage the module:

Jumper	Setting	Description
JP1	closed	No TxD1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 2)
JP2	closed	No RI1_TTL signal available from the
		phyCORE-167HS/E (P1B pin 9)
JP3	closed	No CTS1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 7)
JP4	closed	No DSR1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 4)
JP5	closed	No DTR1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 6)
JP6	closed	No RTS1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 8)
JP7	closed	No CD1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 1)
JP8	closed	No RxD1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 3)

Table 40: Improper Jumper Settings for DB-9 Socket P1B (no second RS-232)

If an RS-232 cable is connected to P1B by mistake, the voltage level on the RS-232 lines could destroy the phyCORE-167HS/E.

2. The optional **UART** populates the phyCORE-167HS/E at U7 (order option PCM-018-Cx-U).

If the phyCORE-167HS/E is purchased with the optional UART a full second RS-232 interface can be made available at DB-9 socket P1B with the jumper settings listed below.

Jumper	Setting	Description
JP1	closed	TxD1_RS232 signal extends to pin 2 at P1B
JP2	closed	RI1_TTL signal from UART U7 extends to
		pin 9 at P1B
JP3	closed	CTS1_RS232 signal extends to pin 7 at P1B
JP4	closed	DSR1_RS232 signal extends to pin 4 at P1B
JP5	closed	DTR1_RS232 signal extends to pin 6 at P1B
JP6	closed	RTS1_RS232 signal extends to pin 8 at P1B
JP7	closed	DCD1_RS232 signal extends to pin 1 at P1B
JP8	closed	RxD1_RS232 signal extends to pin 3 at P1B

Table 41: Jumper Configuration of the DB-9 Socket P1B (UART, 2nd RS-232)

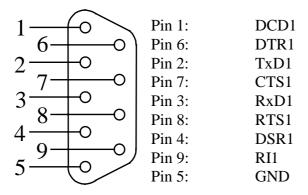


Figure 18: Pin Assignment of the DB-9 Socket P1B as Second RS-232 (UART Populated, Front View)

3. The phyCORE-167HS/E is **NOT** populated with the optional **UART** at U7 (standard PCM-018-Cx), however serial interface emulation¹ with port pins P3.0 and P3.1 is used.

Jumper	Setting	Description
JP1	closed	Port pin P3.0 of the C167Cx emulates TxD1 signal
		which extends via jumpers to RS-232 transceiver U6 on
		the phyCORE-167HS/E, connects to pin 2 at P1B
JP2	open	Pin 9 of DB-9 socket P1B not connected
JP3	open	Pin 7 of DB-9 socket P1B not connected
JP4	open	Pin 4 of DB-9 socket P1B not connected
JP5	open	Pin 6 of DB-9 socket P1B not connected
JP6	open	Pin 8 of DB-9 socket P1B not connected
JP7	open	Pin 1 of DB-9 socket P1B not connected
JP8	closed	Port pin P3.1 of the C167Cx emulates TxD1 signal
		which extends via jumpers to RS-232 transceiver U6 on
		the phyCORE-167HS/E, connects to pin 3 at P1B

Table 42: Jumper Configuration of the DB-9 Socket P1B (2nd RS-232 via Software Emulation)

Figure 19: Pin Assignment of the DB-9 Socket P1B as Emulated RS-232 (Front View)

_

^{1:} Serial interface emulation requires special software drivers which are usually included in the corresponding development tools such as Debugger, Monitor programs etc.

If the phyCORE-167HS/E is **NOT** populated with the optional **UART** at U7 (standard PCM-018-Cx) and the DB-9 socket P1B is used as described above the following jumper settings are not functional and could damage the module:

Jumper	Setting	Description
JP2	closed	No RI1_TTL signal available from the
		phyCORE-167HS/E (P1B pin 9)
JP3	closed	No CTS1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 7)
JP4	closed	No DSR1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 4)
JP5	closed	No DTR1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 6)
JP6	closed	No RTS1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 8)
JP7	closed	No CD1_RS232 signal available from the
		phyCORE-167HS/E (P1B pin 1)

Table 43: Improper Jumper Settings for DB-9 Socket P1B (2nd RS-232 via Software Emulation)

15.3.6 First CAN Interface at Plug P2A

Plug P2A is the lower plug of the double DB-9 connector at P2. P2A is connected to the first CAN interface (CAN0) of the phyCORE-167HS/E via jumpers. Depending on the configuration of the CAN transceivers and their power supply, the following three configurations are possible:

1. CAN transceiver populating the phyCORE-167HS/E is enabled and the CAN signals from the module extend directly to plug P2A.

Jumper	Setting	Description
JP31	2 + 3	Pin 2 of the DB-9 plug P2A is connected to CAN-L0
		from on-board transceiver on the phyCORE module
JP32	2 + 3	Pin 7 of the DB-9 plug P2A is connected to CAN-H0
		from on-board transceiver on the phyCORE module
JP11	open	Input at opto-coupler U4 on the phyCORE
		Development Board HD200 open
JP12	open	Output at opto-coupler U5 on the phyCORE
		Development Board HD200 open
JP13	open	No supply voltage to CAN transceiver and opto-coupler
		on the phyCORE Development Board HD200
JP18	open	No GND potential at CAN transceiver and opto-coupler
		on the phyCORE Development Board HD200
JP29	open	No power supply via CAN bus
JP39	open	No power supply via CAN bus

Table 44: Jumper Configuration for CAN Plug P2A using the CAN Transceiver on the phyCORE-167HS/E

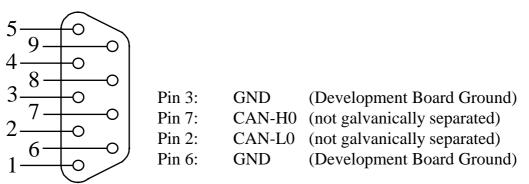


Figure 20: Pin Assignment of the DB-9 Plug P2A (CAN Transceiver on phyCORE-167HS/E, Front View)

2. The CAN transceiver populating the phyCORE-167HS/E is disabled; CAN signals generated by the CAN transceiver (U2) on the Development Board extending to connector P2A without galvanic seperation:

Jumper	Setting	Description
JP31	1 + 2	Pin 2 of DB-9 plug P2A connected with CAN-L0 from
		CAN transceiver U2 on the Development Board
JP32	1 + 2	Pin 7 of DB-9 plug P2A connected with CAN-H0 from
		CAN transceiver U2 on the Development Board
JP11	2 + 3	Input at opto-coupler U4 on the Development Board
		connected to CAN1_Tx (P4.6¹) of the C167CR/C167CS
	1 + 2	Input at opto-coupler U4 on the Development Board
		connected to CAN1_Tx (P8.12) of the C167CR/C167CS
JP12	2 + 3	Output at opto-coupler U5 on the Development Board
		connected to CAN1_Rx (P4.5³) of the C167CR/CS
	1 + 2	Output at opto-coupler U5 on the Development Board
		connected to CAN1_Rx (P8.04) of the C167CR/CS
JP13	2 + 3	Supply voltage for CAN transceiver and opto-coupler
		derived from local supply circuitry on the
		phyCORE Development Board HD200
JP18	closed	CAN transceiver and opto-coupler on the Development
		Board connected with local GND potential
JP29	open	No power supply via CAN bus
JP39	open	No power supply via CAN bus

Table 45: Jumper Configuration for CAN Plug P2A using the CAN Transceiver on the Development Board

^{1:} Port P4.6 is the default port for CAN1_Tx (standard).

^{2:} Port P8.1 is the alternative port for CAN1_Tx (see Controller User's Manual/Data Sheet).

^{3:} Port P4.5 is the default port for CAN1_Rx (standard).

^{4:} Port P8.0 is the alternative port for CAN1_Rx (see Controller User's Manual/Data Sheet).

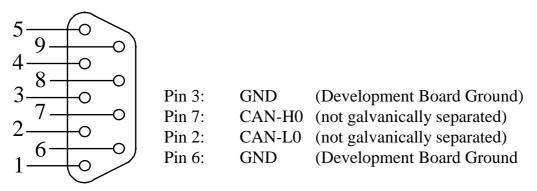


Figure 21: Pin Assignment of the DB-9 Plug P2A (CAN Transceiver on Development Board)

When using the DB-9 connector P2A as CAN interface and the CAN transceiver on the Development Board the following jumper settings are not functional and could damage the module:

Jumper	Setting	Description
JP31	2 + 3	Pin 2 of DB-9 plug P2A connected with CAN-L0 from
		on-board transceiver on the phyCORE-167HS/E
JP32	2 + 3	Pin 7 of DB-9 plug P2A connected with CAN-H0 from
		on-board transceiver on the phyCORE-167HS/E
JP11	2 + 4	Input at opto-coupler U4 on the Development Board is
		connected to CAN-H0 from on-board transceiver of
		the phyCORE-167HS/E
	open	Input at opto-coupler U4 on the Development Board
		not connected
JP12	2 + 4	Output at opto-coupler U5 on the Development Board
		is connected to CAN-L0 from on-board transceiver of
		the phyCORE-167HS/E
	open	Output at opto-coupler U5 on the Development Board
		not connected
JP13	1 + 2	Supply voltage for CAN transceiver and opto-coupler
		on the Development Board derived from external
		source (CAN bus) via on-board voltage regulator
JP29	closed	Supply voltage for on-board voltage regulator
		from pin 9 of DB-9 connector P2A
JP39	see Table 48	CAN bus supply voltage reduction for CAN circuitry

Table 46: Improper Jumper Settings for the CAN Plug P2A (CAN Transceiver on the Development Board)

3. The CAN transceiver populating the phyCORE-167HS/E is disabled; CAN signals generated by the CAN transceiver (U2) on the Development Board extend to connector P2A with galvanic separation. This configuration requires connection of an external CAN supply voltage of 7 to 28 V. The external power supply must be only connected to either P2A or P2B.

Jumper	Setting	Description
JP31	1 + 2	Pin 2 of DB-9 plug P2A connected with CAN-L0 from
		CAN transceiver U2 on the Development Board
JP32	1 + 2	Pin 7 of DB-9 plug P2A connected with CAN-H0 from
		CAN transceiver U2 on the Development Board
JP11	2 + 3	Input at opto-coupler U4 on the Development Board
		connected to CAN1_Tx (P4.61) of the C167CR/C167CS
	1 + 2	Input at opto-coupler U4 on the Development Board
		connected to CAN1_Tx (P8.12) of the C167CR/C167CS
JP12	2 + 3	Output at opto-coupler U5 on the Development Board
		connected to CAN1_Rx (P4.5 ³) of the C167CR/CS
	1 + 2	Output at opto-coupler U5 on the Development Board
		connected to CAN1_Rx (P8.04) of the C167CR/CS
JP13	1 + 2	Supply voltage for CAN transceiver and opto-coupler
		on the Development Board derived from external source
		(CAN bus) via on-board voltage regulator
JP18	open	CAN transceiver and opto-coupler on the Development
		Board disconnected from local GND potential
JP29	closed	Supply voltage for on-board voltage regulator
		from pin 9 of DB-9 plug P2A
JP39	see Table 48	CAN bus supply voltage reduction for CAN circuitry

Table 47: Jumper Configuration for CAN Plug P2A using the CAN Transceiver on the Development Board with Galvanic Separation

^{1:} Port P4.6 is the default port for CAN1_Tx (standard).

^{2:} Port P8.1 is the alternative port for CAN1_Tx (see Controller User's Manual/Data Sheet).

^{3:} Port P4.5 is the default port for CAN1_Rx (standard).

^{4:} Port P8.0 is the alternative port for CAN1_Rx (see Controller User's Manual/Data Sheet).

CAN Bus Voltage Supply Reduction via JP39:

Depending on the voltage level that is supplied over the CAN bus at P2A or P2B (VCAN_IN1+) JP39 must be configured in order to routed the applicable voltage to the CAN voltage regulator at U8 on the Development Board:

VCAN_IN+	JP39
7 V18 V	1 + 2
18 V23 V	2 + 3
23 V28 V	open

Table 48: JP39 CAN Bus Voltage Supply Reduction

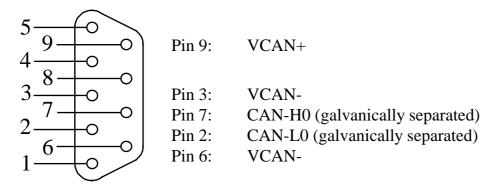


Figure 22: Pin Assignment of the DB-9 Plug P2A (CAN Transceiver on Development Board with Galvanic Separation)

When using the DB-9 plug P2A as CAN interface, and the CAN transceiver on the Development Board with galvanic separation, the following jumper settings are not functional and could damage the module:

Jumper	Setting	Description
JP31	2 + 3	Pin 2 of DB-9 plug P2A connected with CAN-L0 from
		on-board transceiver on the phyCORE-167HS/E
JP32	2 + 3	Pin 7 of DB-9 plug P2A connected with CAN-H0 from
		on-board transceiver on the phyCORE-167HS/E
JP11	2 + 4	Input at opto-coupler U4 on the Development Board is
		connected to CAN-H0 from on-board transceiver on
		the phyCORE-167HS/E
	open	Input at opto-coupler U4 on the Development Board
		not connected
JP12	2 + 4	Output at opto-coupler U5 on the Development Board
		is connected to CAN-L0 from on-board transceiver on
		the phyCORE-167HS/E
	open	Output at opto-coupler U5 on the Development Board
		not connected
JP13	2 + 3	Supply voltage for CAN transceiver and opto-coupler
		derived from local supply circuitry on the
		phyCORE Development Board HD200
JP18	closed	CAN transceiver and opto-coupler on the Development
		Board connected with local GND potential
JP29	open	No power supply via CAN bus
JP39	see Table 48	Incorrect CAN bus supply voltage reduction for CAN
		circuitry

Table 49: Improper Jumper Settings for the CAN Plug P2A (CAN Transceiver on Development Board with Galvanic Separation)

15.3.7 Second CAN Interface at Plug P2B

Plug P2B is the upper plug of the double DB-9 connector at P2. P2B is connected to the second CAN interface (CAN1) of the phyCORE-167HS/E via jumpers. This option is only available if the phyCORE module is populated with the Infineon C167CS (order option PCM-018-C1). Depending on the configuration of the CAN transceivers and their power supply, the following three configurations are possible:

1. CAN transceiver populating the phyCORE-167HS/E is enabled and the CAN signals from the module extend directly to plug P2B.

Jumper	Setting	Description
JP33	2 + 4	Pin 2 of the DB-9 plug P2B is connected to CAN-L1
		from on-board transceiver on the phyCORE module
JP34	2 + 3	Pin 7 of the DB-9 plug P2B is connected to CAN-H1
		from on-board transceiver on the phyCORE module
JP14	open	Input at opto-coupler U6 on the phyCORE
		Development Board HD200 open
JP15	open	Output at opto-coupler U7 on the phyCORE
		Development Board HD200 open
JP13	open	CAN transceiver and opto-coupler on the Development
		Board disconnected from supply voltage
JP18	open	No GND potential at CAN transceiver and opto-coupler
		on the phyCORE Development Board HD200
JP29	open	No power supply via CAN bus
JP39	open	No power supply via CAN bus

Table 50: Jumper Configuration for CAN Plug P2B using the CAN Transceiver on the phyCORE-167HS/E

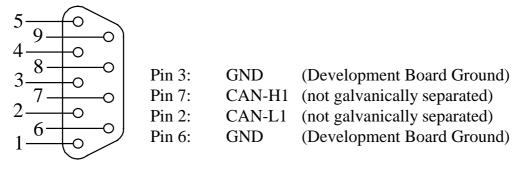


Figure 23: Pin Assignment of the DB-9 Plug P2B (CAN Transceiver on phyCORE-167HS/E, only with C167CS)

2. The CAN transceiver populating the phyCORE-167HS/E is disabled; CAN signals generated by the CAN transceiver (U3) on the Development Board extending to connector P2B without galvanic seperation:

Jumper	Setting	Description
JP33	2 + 3	Pin 2 of DB-9 plug P2B connected with CAN-L1 from
		CAN transceiver U3 on the Development Board
JP34	1 + 2	Pin 7 of DB-9 plug P2B connected with CAN-H1 from
		CAN transceiver U3 on the Development Board
JP14	2 + 3	Input at opto-coupler U6 on the Development Board
		connected to CAN2_Tx (P4.71) of the C167CS
	1 + 2	Input at opto-coupler U6 on the Development Board
		connected to CAN2_Tx (P8.32) of the C167CS
JP15	2 + 3	Output at opto-coupler U7 on the Development Board
		connected to CAN2_Rx (P4.4³) of the C167CS
	1 + 2	Output at opto-coupler U7 on the Development Board
		connected to CAN2_Rx (P8.24) of the C167CS
JP13	open	CAN transceiver and opto-coupler on the Development
		Board disconnected from supply voltage
JP18	open	No GND potential at CAN transceiver and opto-coupler
		on the phyCORE Development Board HD200
JP29	open	No power supply via CAN bus
JP39	open	No power supply via CAN bus

Table 51: Jumper Configuration for CAN Plug P2B using the CAN Transceiver on the phyCORE-167HS/E

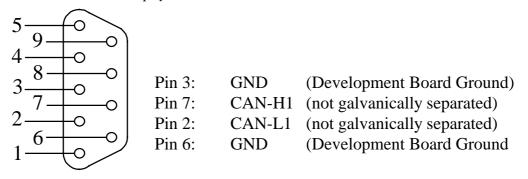


Figure 24: Pin Assignment of the DB-9 Plug P2B (CAN Transceiver on Development Board, only with C167CS)

^{1:} Port P4.7 is the default port for CAN2_Tx (standard).

^{2:} Port P8.3 is the alternative port for CAN2_Tx (see C167CS User's Manual/Data Sheet).

^{3:} Port P4.4 is the default port for CAN2_Rx (standard).

^{4:} Port P8.2 is the alternative port for CAN2_Rx (see C167CS User's Manual/Data Sheet).

When using the DB-9 connector P2B as second CAN interface and the CAN transceiver on the Development Board the following jumper settings are not functional and could damage the module:

Jumper	Setting	Description			
JP30	closed	Pin 8 at P2B is connected with TxD1_RS232			
		from the phyCORE-167HS/E			
JP33	1 + 2	Pin 2 at P2B is connected with P2.5			
		from the phyCORE-167HS/E			
	2 + 4	Pin 2 at P2B is connected with CAN_L1 from the			
		on-board CAN transceiver on the phyCORE-167HS/E			
JP34	2 + 3	Pin 7 at P2B is connected with CAN_H1 from the			
		on-board CAN transceiver on the phyCORE-167HS/E			
JP14	2 + 4	Input at opto-coupler U6 on the Development Board is			
		connected to CAN-H1 from on-board transceiver of			
		the phyCORE-167HS/E			
	open	Input at opto-coupler U6 on the Development Board			
		not connected			
JP15	2 + 4	Output at opto-coupler U7 on the Development Board			
		is connected to CAN-L1 from on-board transceiver of			
i		the phyCORE-167HS/E			
	open	Output at opto-coupler U7 on the Development Board			
		not connected			
JP13	1 + 2	Supply voltage for CAN transceiver and opto-coupler			
		on the Development Board derived from external			
		source (CAN bus) via on-board voltage regulator			
JP29	closed	Supply voltage for on-board voltage regulator			
		from pin 9 of DB-9 connector P2A			
JP39	see Table 48	CAN bus supply voltage reduction for CAN circuitry			

Table 52: Improper Jumper Settings for the CAN Plug P2B (CAN Transceiver on the Development Board, only with C167CS)

3. The CAN transceiver populating the phyCORE-167HS/E is disabled; CAN signals generated by the CAN transceiver (U3) on the Development Board extend to connector P2B with galvanic separation. This configuration requires connection of an external CAN supply voltage of 7 to 28 V. The external power supply must be only connected to either P2A or P2B.

Jumper	Setting	Description			
JP33	2 + 3	Pin 2 of DB-9 plug P2B connected with CAN-L1 from			
		CAN transceiver U3 on the Development Board			
JP34	1 + 2	Pin 7 of DB-9 plug P2B connected with CAN-H1 from			
		CAN transceiver U3 on the Development Board			
JP14	2 + 3	Input at opto-coupler U6 on the Development Board			
		connected to CAN2_Tx (P4.61) of the C167CS			
	1 + 2	Input at opto-coupler U4 on the Development Board			
		connected to CAN2_Tx (P8.32) of the C167CS			
JP15	2 + 3	Output at opto-coupler U7 on the Development Board			
		connected to CAN2_Rx (P4.4³) of the C167CS			
	1 + 2	Output at opto-coupler U7 on the Development Board			
		connected to CAN2_Rx (P8.24) of the C167CS			
JP13	1 + 2	Supply voltage for CAN transceiver and opto-coupler			
		on the Development Board derived from external source			
		(CAN bus) via on-board voltage regulator			
JP18	open	CAN transceiver and opto-coupler on the Development			
		Board disconnected from local GND potential			
JP29	closed	Supply voltage for on-board voltage regulator			
		from pin 9 of DB-9 plug P2B or P2A			
JP39	see Table 48	CAN bus supply voltage reduction for CAN circuitry			

Table 53: Jumper Configuration for CAN Plug P2B using the CAN Transceiver on the Development Board with Galvanic Separation (only with C167CS)

^{1:} Port P4.7 is the default port for CAN2_Tx (standard).

^{2:} Port P8.3 is the alternative port for CAN2_Tx (see C167CS User's Manual/Data Sheet).

^{3:} Port P4.4 is the default port for CAN2_Rx (standard).

^{4:} Port P8.2 is the alternative port for CAN2_Rx (see C167CS User's Manual/Data Sheet).

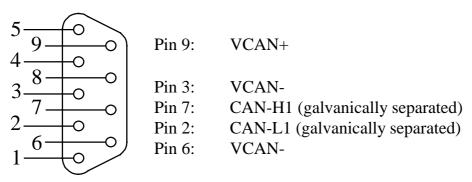


Figure 25: Pin Assignment of the DB-9 Plug P2B (CAN Transceiver on Development Board with Galvanic Separation, only with C167CS)

When using the DB-9 plug P2B as second CAN interface, and the CAN transceiver on the Development Board with galvanic separation, the following jumper settings are not functional and could damage the module:

Jumper	Setting	Description		
JP30	closed	Pin 8 at P2B is connected with TxD1_RS232		
		from the phyCORE-167HS/E		
JP33	1 + 2	Pin 2 at P2B is connected with P2.5		
		from the phyCORE-167HS/E		
	2 + 4	Pin 2 at P2B is connected with CAN_L1 from the		
		on-board CAN transceiver on the phyCORE-167HS/E		
JP34	2 + 3	Pin 7 at P2B is connected with CAN_H1 from the		
		on-board CAN transceiver on the phyCORE-167HS/E		
JP14	2 + 4	Input at opto-coupler U6 on the Development Board is		
		connected to CAN-H1 from on-board transceiver of the		
		phyCORE-167HS/E		
	open	Input at opto-coupler U6 on the Development Board		
		not connected		
JP15	2 + 4	Output at opto-coupler U7 on the Development Board is		
		connected to CAN-L1 from on-board transceiver of the		
		phyCORE-167HS/E		
	open	Output at opto-coupler U7 on the Development Board		
		not connected		
JP13	2 + 3	Supply voltage for CAN transceiver and opto-coupler		
		derived from local supply circuitry on the		
		phyCORE Development Board HD200		
JP18	closed	CAN transceiver and opto-coupler on the Development		
		Board connected with local GND potential		
JP29	open	No power supply via CAN bus		
JP39	see Table 48	Incorrect CAN bus supply voltage reduction for CAN		
		circuitry		

Table 54: Improper Jumper Settings for the CAN Plug P2B (CAN Transceiver on Development Board with Galvanic Separation)

15.3.8 Programmable LED D3

The phyCORE Development Board HD200 offers a programmable LED at D3 for user implementations. This LED can be connected to port pin P2.0 of the phyCORE-167HS/E which is available via signal GPIO0 (JP17 = closed). A low-level at port pin P2.0 causes the LED to illuminate, LED D3 remains off when writing a high-level to P2.0.

Jumper	Setting	Description	
JP17	closed	Port pin P2.0 (GPIO0) of the C167Cx controller	
		controls LED D3 on the Development Board	

Table 55: JP17 Configuration of the Programmable LED D3

15.3.9 Pin Assignment Summary of the phyCORE, the Expansion Bus and the Patch Field

As described in *section 15.1*, all signals from the phyCORE-167HS/E extend in a strict 1:1 assignment to the Expansion Bus connector X2 on the Development Board. These signals, in turn, are routed in a similar manner to the patch field on an optional expansion board that mounts to the Development Board at X2.

Please note that, depending on the design and size of the expansion board, only a portion of the entire patch field is utilized under certain circumstances. When this is the case, certain signals described in the following section will not be available on the expansion board. However, the pin assignment scheme remains consistent.

A two dimensional numbering matrix similar to the one used for the pin layout of the phyCORE-connector is provided to identify signals on the Expansion Bus connector (X2 on the Development Board) as well as the patch field.

However, the numbering scheme for Expansion Bus connector and patch field matrices differs from that of the phyCORE-connector, as shown in the following two figures:

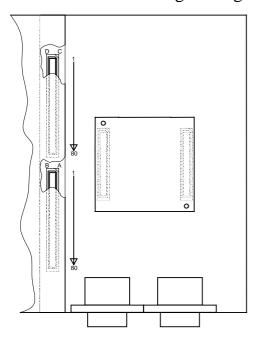


Figure 26: Pin Assignment Scheme of the Expansion Bus

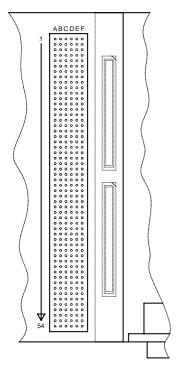


Figure 27: Pin Assignment Scheme of the Patch Field

The pin assignment on the phyCORE-167HS/E, in conjunction with the Expansion Bus (X2) on the Development Board and the patch field on an expansion board, is as follows:

Signal	phyCORE-167HS/E	Expansion Bus	Patch Field
P0L.0/D0	18B	18B	33F
P0L.1/D1	19A	19A	34A
P0L.2/D2	20A	20A	34E
P0L.3/D3	20B	20B	34B
P0L.4/D4	21A	21A	34D
P0L.5/D5	21B	21B	34F
P0L.6/D6	22B	22B	35A
P0L.7/D7	23A	23A	35E
P0H.0/D8	28B	28B	37C
P0H.1/D9	29A	29A	37E
P0H.2/D10	30A	30A	37B
P0H.3/D11	30B	30B	37F
P0H.4/D12	31A	31A	38A
P0H.5/D13	31B	31B	38C
P0H.6/D14	32B	32B	38E
P0H.7/D15	33A	33A	38B
P1L.0/A0	8B	8B	30B
P1L.1/A1	9A	9A	30D
P1L.2/A2	10A	10A	30F
P1L.3/A3	10B	10B	31A
P1L.4/A4	11A	11A	31E
P1L.5/A5	11B	11B	31B
P1L.6/A6	12B	12B	31F
P1L.7/A7	13A	13A	32A
P1H.0/A8	13B	13B	32C
P1H.1/A9	14A	14A	32E
P1H.2/A10	15A	15A	32B
P1H.3/A11	15B	15B	32F
P1H.4/A12/CC24IO	16A	16A	33A
P1H.5/A13/CC25IO	16B	16B	33C
P1H.6/A14/CC26IO	17B	17B	33E
P1H.7/A15/CC27IO	18A	18A	33B

Table 56: Pin Assignment Data/Address Bus for the phyCORE-167HS/E / Development Board / Expansion Board

Signal	phyCORE-167HS/E	Expansion Bus	Patch Field
P4.0/A16	23B	23B	35B
P4.1/A17	24A	24A	35D
P4.2/A18	25A	25A	35F
P4.3/A19	25B	25B	36A
P4.4/A20/CAN2_RxD	26A	26A	36E
P4.5/A21/CAN1_RxD	26B	26B	36B
P4.6/A22/CAN1_TxD	27B	27B	36F
P4.7/A23/CAN2_TxD	28A	28A	37A
P2.0/CC0IO	11D	11D	4A
P2.1/CC1IO	12D	12D	4B
P2.2/CC2IO	13C	13C	4F
P2.3/CC3IO	13D	13D	5A
P2.4/CC4IO	14C	14C	5C
P2.5/CC5IO	15C	15C	5E
P2.6/CC6IO	15D	15D	5B
P2.7/CC7IO	16C	16C	5F
P2.8/CC8IO/EX0IN	2B	2B	28E
P2.9/CC9IO/EX1IN	3A	3A	28B
P2.10/CC10IO/EX2IN	3B	3B	28F
P2.11/CC11IO/EX3IN	19C	19C	6F
P2.12/CC12IO/EX4IN	20C	20C	7A
P2.13/CC13IO/EX5IN	37D	37D	12F
P2.14/CC14IO/EX6IN	25D	25D	8F
P2.15/CC15IO/EX7IN/T7IN	26D	26D	9E
P3.0/T0IN	44A	44A	42E
P3.1/T6OUT	45A	45A	42B
P3.2/CAPIN	45B	45B	42F
P3.3/T3OUT	46A	46A	43A
P3.4/T3EUD	46B	46B	43C
P3.5/T4IN	47B	47B	43E
P3.6/T3IN	48A	48A	43B
P3.7/T2IN	48B	48B	43F
P3.8/MRST	42B	42B	41F
P3.9/MTSR	43A	43A	42A
P3.10/TxD0_TTL	17D	17D	6C
P3.11/RxD0_TTL	16D	16D	6A
P3.12//BHE (/WRH)	33B (see J35)	33B	38F
P3.13/SCLK	43B	43B	42C
P3.15/CLKOUT	1B	1B	28C

Table 57: Pin Assignment Port P2, P3, P4 for the phyCORE-167HS/E / Development Board / Expansion Board

Signal	phyCORE-167HS/E	Expansion Bus	Patch Field
P5.0/AN0	50C	50C	17A
P5.1/AN1	49C	49C	16F
P5.2/AN2	48D	48D	16B
P5.3/AN3	48C	48C	16E
P5.4/AN4	47D	47D	16C
P5.5/AN5	46D	46D	16A
P5.6/AN6	46C	46C	15F
P5.7/AN7	45D	45D	15B
P5.8/AN8	45C	45C	15E
P5.9/AN9	44C	44C	15C
P5.10/AN10/T6EUD	43D	43D	15A
P5.11/AN11/T5EUD	43C	43C	14F
P5.12/AN12/T6IN	42D	42D	14B
P5.13/AN13/T5IN	41D	41D	14E
P5.14/AN14/T4EUD	41C	41C	14A
P5.15/AN15/T2EUD	40D	40D	13F
P6.0//CS0	49A	49A	44A
P6.1//CS1	50A (see J33)	50A	44E
P6.2//CS2	6B	6B	29F
P6.3//CS3	5B	5B	29B
P6.4//CS4	5A	5A	29E
P6.5//HOLD	35B	35B	39B
P6.6/ /HLDA	36A	36A	39D
P6.7//BREQ	36B	36B	39F
P7.0/POUT0	37B	37B	40A
P7.1/POUT1	38A	38A	40E
P7.2/POUT2	38B	38B	40B
P7.3/POUT3	39A	39A	40D
P7.4/CC28IO	40A	40A	40F
P7.5/CC29IO	40B	40B	41A
P7.6/CC30IO	41A	41A	41E
P7.7/CC31IO	41B	41B	41B
P8.0/CC16IO	27D	27D	9B
P8.1/CC17IO	28D	28D	10A
P8.2/CC18IO	30D	30D	10B
P8.3/CC19IO	31D	31D	11A
P8.4/CC20IO	38C	38C (GPIO42)	13A
P8.5/CC21IO	38D	38D (GPIO43)	13E
P8.6/CC22IO	39C	39C (GPIO44)	13B
P8.7/CC23IO	40C	40C (GPIO45)	13D

Table 58: Pin Assignment Port P5, P6, P7, P8 for the phyCORE-167HS/E/ Development Board / Expansion Board

Signal	phyCORE-167HS/E	Expansion Bus	Patch Field
CAN1_RxD/P4.5/A21	26B	26B	36B
CAN1_TxD/P4.6/A22	27B	27B	36F
CAN2_RxD/P4.4/A20	26A	26A	36E
CAN2_TxD/P4.7/A23	28A	28A	37A
CAN-H0	21D	21D	7D
CAN-L0	20D	20D	7E
CAN-H1	18C	18C	6E
CAN-L1	18D	18D	6B
RxD0_RS232	22D	22D	7F
TxD0_RS232	23D	23D	8E
RxD1_RS232	21C	21C	7B
TxD1_RS-232	23C	23C	8A
/RTS1_RS232	24C	24C	8B
/CTS1_RS232	25C	25C	8D
/DSR1_RS232	26C	26C	9A
/DTR1_RS232	28C	28C	9F
/RI1_TTL	29C	29C	10C
/CD1_TTL	30C	30C	10E
SCL	31C	31C	10F
SDA	32D	32D	11C
RxD- (Ethernet)	35C	35C (GPIO37)	12A
TxD- (Ethernet)	36C	36C (GPIO39)	12B
RxD+ (Ethernet)	35D	35D (GPIO38)	12E
TxD+ (Ethernet)	36D	36D (GPIO40)	12D
LINK_LED (Ethernet)	33C	33C (GPIO34)	11E
LAN_LED (Ethernet)	34C	34C (GPIO36)	11F

Table 59: Pin Assignment Interface Signals for the phyCORE-167HS/E / Development Board / Expansion Board

Signal	phyCORE-167HS/E	Expansion Bus	Patch Field
/RD	7B	7B	30A
/WR/ /WRL	8A (see J34)	8A	30E
/READY	34A	34A	39A
/ALE	6A	6A	29D
OWE	4D	4D	2C
VPP (NOT with C167Cx)	5D	5D	1D
/RSTIN	10C, 10D	10C, 10D	3D, 3F
/RSTOUT	11C	11C	4E
BOOT	9C	9C	3B
/NMI	4A	4A	29A
/PFO	8C	8C	3E
/CS_UART	50B (see J37)	50B (BUS79)	44B
IRQ_UART	35A (see J36)	35A (BUS54)	39E
/IRQ_RTC	33D	33D	11B
/IRQ_ETH	50A (see J33)	50A (BUS78)	44E
PFI	7D	7D	2F
WDI	8D	8D	3A

Table 60: Pin Assignment Control Signals for the phyCORE-167HS/E / Development Board / Expansion Board

Signal	phyCORE-167HS/E	Expansion Bus	Patch Field
VCC	1C, 2C, 1D, 2D	1C, 2C, 1D, 2D	1A, 1C
VCC2	Not defined		2A, 1B
XTAL1	1A	1A	28A
VPD	6D	6D	2D
VBAT	6C	6C	2B
VAREF	50D	50D	17E
VAGND	42C, 47C, 39D,	42C, 47C, 39D	connected to
	44D, 49D	44D, 49D	GND potential
GND	2A, 7A, 12A, 17A, 22A,	2A, 7A, 12A,	3C, 4C, 7C, 8C,
	27A, 32A, 37A,42A,	17A, 22A, 27A,	9C, 12C, 13C,
	47A, 4B, 9B, 14B, 19B,	32A, 37A,42A,	14C, 17C, 18C,
	24B, 29B, 34B, 39B,	47A, 52A, 57A,	19C, 22C, 23C,
	44B, 49B, 3C, 7C, 12C,	62A, 67A, 72A,	24C, 27C, 29C,
	17C, 22C, 27C, 32C,	77A, 4B, 9B,	30C, 31C, 34C,
	37C, 3D, 9D, 14D, 19D,	14B, 19B, 24B,	35C, 36C, 39C,
	24D, 29D, 34D	29B, 34B, 39B,	40C, 41C, 44C,
		44B, 49B, 54B,	45C, 46C, 49C,
		59B, 64B, 69B,	50C, 51C, 54C,
		74B, 79B,3C, 7C,	4D, 5D, 6D, 9D,
		12C, 17C, 22C,	10D, 11D, 14D,
		27C, 32C, 37C,	15D, 16D, 9D,
		42C, 47C, 52C,	20D, 21D, 24D,
		57C, 62C, 67C,	25D, 26D, 28D,
		72C, 77C, 3D,	31D, 32D, 33D,
		9D, 14D, 19D,	36D, 37D, 38D,
		24D, 29D, 34D,	41D, 42D, 43D,
		39D, 44D, 49D,	46D, 47D, 48D,
		54D, 59D, 64D,	51D, 52D, 53D,
		69D, 74D, 79	1E, 2E, 1F ¹

Table 61: Pin Assignment Power Supply for the phyCORE-167HS/E / Development Board / Expansion Board

¹: The assignment of this pin differs from other PHYTEC Expansion Boards (as of 11/20/02).

Signal	phyCORE-167Cx	Expansion Bus	Patch Field
NC	4C, 5C	51A, 53A, 54A,	27B, 27D, 54D,
		55A, 56A, 58A,	27F, 54F
		59A, 60A, 61A,	44D, 44F, 45A,
		63A, 64A, 65A,	45E, 45B, 45D,
		66A, 68A, 69A,	45F, 46A, 46E,
		70A, 71A, 73A,	46B, 46F, 47A,
		74A, 75A, 76A,	47C, 47E, 47B,
		78A, 79A, 80A	47F, 48A, 48C,
		51B, 53B, 54B,	48E, 48B, 48F,
		55B, 56B, 58B,	49A, 49E, 49B,
		59B, 60B, 61B,	49D, 49F, 50A,
		63B, 64B, 65B,	50E, 50B, 50D,
		66B, 68B, 69B,	50F, 51A, 51E,
		70B, 71B, 73B,	51B, 51F, 52A,
		74B, 75B, 76B,	52C, 52E, 52B,
		78B, 79B, 80B	52F, 53A, 53C,
		51C, 53C, 54C,	53E, 53B, 53F,
		55C, 56C, 58C,	54A, 54E, 54B
		59C, 60C, 61C,	
		63C, 64C, 65C,	
		66C, 68C, 69C,	
		70C, 71C, 73C,	
		74C, 75C, 76C,	
		78C, 79C, 80C	
		4C, 5C,	
		51D, 53D, 54D,	
		55D, 56D, 58D,	
		59D, 60D, 61D,	
		63D, 64D, 65D,	
		66D, 68D, 69D,	
		70D, 71D, 73D,	
		74D, 75D, 76D,	
		78D, 79D, 80D	

Table 62: Unused Pins on the phyCORE-167HS/E / Development Board / Expansion Board

15.3.10 Battery Connector BAT1

The mounting space BAT1 (see PCB stencil) is provided for battery buffers the **RTC** connection of a that the phyCORE-167HS/E. The Voltage Supervisor Chip on the phyCORE-167HS/E is responsible for switching from a normal power supply to a back-up battery. The optional battery required for this function (refer to section 11) is available through PHYTEC (order code BL-011).

15.3.11 Releasing the /NMI Interrupt

The boot button S1 on the phyCORE Development Board HD200 can be routed to the non-maskable interrupt (/NMI) of the C167CR/C167CS controller with applicable configuration of Jumper JP28 (also refer to section 15.3.2).

Jumper	Setting	Description
JP28	7 + 8	Boot button S1 can be used to release the /NMI
	1 + 3	interrrupt of the C167CR/C167CScontroller

Table 63: JP28 Releasing the /NMI Interrupt

15.3.12 DS2401 Silicon Serial Number

Communication to a DS2401 Silicon Serial Number can be implemented in various software applications for the definition of a node address or as copy protection in networked applications. The DS2401 can be soldered on space U10 or U9 on the Development Board, depending on the type of device packaging being used.

The Silicon Serial Number Chip mounted on the phyCORE Development Board HD200 can be connected to port pin P2.1 of the C167CR/C167CS available at GPIO1 (JP19 = closed).

Jumper	Setting	Description
JP19	closed	Port pin P2.1 (GPIO1) of the C167CR/C167CS
		is used to access the Silicon Serial Number

Table 64: JP19 Jumper Configuration for Silicon Serial Number Chip

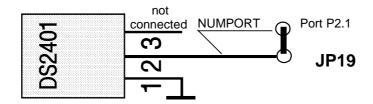


Figure 28: Connecting the DS2401 Silicon Serial Number

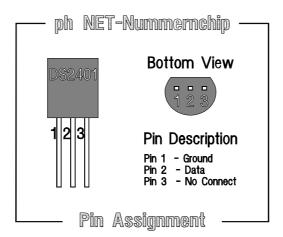


Figure 29: Pin Assignment of the DS2401 Silicon Serial Number

15.3.13 Pin Header Connector X4

The pin header X4 on the Development Board enables connection of an optional modem power supply. Connector X4 supplies 5 VDC at pin 1 and provides the phyCORE Development Board HD200 GND potential at pin 2. The maximum current draw depends on the power adapter used. We recommend the use of modems with less than 250 mA current draw.

15.3.14 JP40, S3 Multi-Purpose Push Button Configuration

Push button S3 on the Development Board HD200 can be connected to various input pins of the microcontroller populating the phyCORE module with the help of Jumper JP40. On phyCORE modules featuring an Infineon 16-bit microcontroller this push button can control the controller's NMI input. Push button S3 connects the signal to Ground potential when pushed. A 4.7 kOhm pull-up resistor is used to guarantee a defined high level of the applicable signal line.

The following configurations are possible with JP40:

Multi-Purpose Push Button S3 Configuration	JP40
No connection between S3 and any microcontroller	open*
input pin	
S3 connected with /NMI (BUS5) signal of the	1 + 2
C167CR/C167CS microcontroller	
S3 connected with P2.10 (BUS4) signal of the	2 + 3
C167CR/C167CS microcontroller	

^{* =} Default setting

Table 65: JP40 Multi-Purpose Push Button S3 Configuration

16 debugCORE-167HSE

The debugCORE-167HSE is a special debugging version Single Board Computer (SBC) module which is 100 % function-compatible with the phyCORE-167HSE. As opposed to the phyCORE-167HSE, which was developed for use in OEM applications, the debugCORE-167HSE is used for simple and efficient error detection and debugging using a hardware emulator. To support its debugging function, the debugCORE-167HSE provides all required connectors for emulator connectivity and is equipped with LEDs for displaying the operating state.

Since the debugCORE is 100% function-compatible with the phyCORE-167HSE, it can easily be inserted directly into the application in place of the phyCORE-167HSE for the purpose of hardware debugging (*see Figure 30*).

16.1 Components of the debugCORE

As described previously, the debugCORE-167HSE represents a superset and expansion of the phyCORE-167HSE.

The following components have been added for simple debugging:

- two 80-pole SMD-connectors (X3), through which all necessary controller signals extend, and to which the debugADAPTER-167 is attached
- a reset button (S1)
- pin header row (X2) with silk-screened designator for easy access to voltage levels and
- two LEDs (D1, D3) for status display

The following figure shows the positions of the additional components.

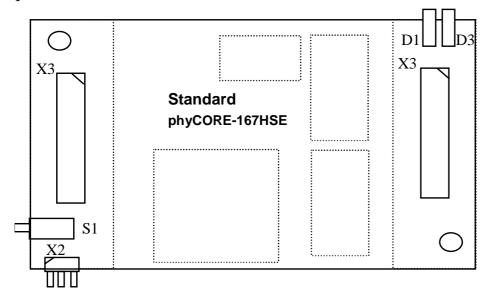


Figure 30: Positions of the Additional Components on the debugCORE-167HSE

The pin header row X2 provides a simple method of accessing the supply voltage of the debugCORE-167HSE and its reset signal for the purpose of measurement.

The following table shows the pin layout.

Pin	Signal
1	VCC
2	GND
3	/RESET

Table 66: Pinout Pin Header Row X2 on the debug CORE-167HSE

Two LEDs D1 and D3 are provided for status display of the debugCORE-167HSE. LED D1 shows whether the controller is in Adapt Mode or not, in other words, whether an emulation is in progress. LED D4 shows whether the EINIT (end of initialization) instruction was carried out.

16.2 debugADAPTER-167

The debugADAPTER-167 is required to allow easy connection of the debugCORE-167HSE to an Emulator. The debugADAPTER-167 is inserted into the SMD socket at X2 on the debugCORE. The debugADAPTER-167 features a Quad-Connector which enables direct connection of an Emulator without any additional expansion.

The debugADAPTER-167 is populated with various jumpers. These jumpers however are not relevant during operation on a debugCORE-167HSE.

16.2.1 The Quad-Connector

The quad-connector is the safest and most reliable method of connecting the debug hardware to a Hitex or NOHAU Emulator. The interface contains all C167Cx processor signals and power pins. In addition, the quad-connector is also the most inexpensive emulator interface solution available on the market.

Quad-Connector X3 A

Quad-Connector X3 B

Pin	Signal	Signal	Pin	Pin	Signal	Signal	Pin
1	NC	NC	2	41	NC	NC	42
3	P6.0	P6.1	4	43	VREF	VGND	44
5	P6.2	P6.3	6	45	P5.10	P5.11	46
7	P6.4	/HLD-P	8	47	P5.12	P5.13	48
9	P6.6	P6.7	10	49	P5.14	P5.15	50
11	P8.0	P8.1	12	51	GND	VCC	52
13	P8.2	P8.3	14	53	P2.0	P2.1	54
15	P8.4	P8.5	16	55	P2.2	P2.3	56
17	P8.6	P8.7	18	57	P2.4	P2.5	58
19	VCC	GND	20	59	P2.6	P2.7	60
21	P7.0	P7.1	22	61	GND	VCC	62
23	P7.2	P7.3	24	63	P2.8	P2.9	64
25	P7.4	P7.5	26	65	P2.10	P2.11	66
27	P7.6	P7.7	28	67	P2.12	P2.13	68
29	P5.0	P5.1	30	69	P2.14	P2.15	70
31	P5.2	P5.3	32	71	P3.0	P3.1	72
33	P5.4	P5.5	34	73	P3.2	P3.3	74
35	P5.6	P5.7	36	75	P3.4	P3.5	76
37	P5.8	P5.9	38	77	GND	VCC	78
39	NC	NC	40	79	NC	NC	80

Quad-Connector X3 C

Quad-Connector X3 D

Pin	Signal	Signal	Pin	Pin	Signal	Signal	Pin
81	NC	NC	82	121	NC	NC	122
83	P3.6	P3.7	84	123	VCC	GND	124
85	P3.8	P3.9	86	125	D9	D10	126
87	P3.10	P3.11	88	127	D11	D12	128
89	/WRH	P3.13	90	129	D13	D14	130
91	P3.15	VCC	92	131	D15	A0	132
93	GND	VPP	94	133	A1	A2	134
95	A16	A17	96	135	A3	A4	136
97	A18	A19	98	137	A5	A6	138
99	A20	A21	100	139	A7	VCC	140
101	A22	A23	102	141	GND	A8	142
103	VCC	GND	104	143	A9	A10	144
105	/RD-P	/WRL	106	145	A11	A12	146
107	/RDY-P	ALE	108	147	A13	A14	148
109	/EA	D0	110	149	A15	VCC	150
111	D1	D2	112	151	XTO	XTI	152
113	D3	D4	114	153	GND	/RES-P	154
115	D5	D6	116	155	/RESO-P	/NMI-P	156
117	D7	D8	118	157	GND	VCC	158
119	NC	NC	120	159	NC	NC	160

Table 67: Connector Layout of the Ouad-Connector (X3)

16.3 Physical Dimensions

Due to the required expansion header, the debugCORE's physical dimensions are greater than those of its phyCORE-base module. This must be taken into consideration, especially upon insertion into the target application.

Dimensions:

debugCORE-167HSE 80 x 53 mm debugAdapter-167 81 x 66 mm

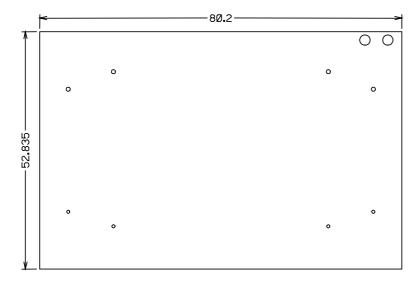


Figure 31: Physical Dimensions debug CORE-167HSE

17 Ethernet Port

The phyCORE Development Board HD200 provides a 10-pin header connector at X7 for mounting the PHYTEC Ethernet transformer module. The optional add-on module is available through PHYTEC (order code EAD-001).

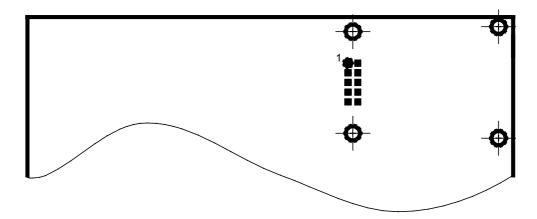


Figure 32: Ethernet Transformer Module Connector

The pinout for the Ethernet transformer connector is shown below:

Pin#	Function	Note
1	ETH_LanLED	Check configuration of J37 on phyCORE
		module and JP37 on the Development Board!
2	ETH_LinkLED	Check configuration of J36 on phyCORE
		module and JP38 on the Development Board!
3	VCC	
4	ETH_TxD+	
5	ETH_TxD-	
6	GND	
7	ETH_RxD+	
8	ETH_RxD-	
9	GND	
10	VCC	

Table 68: Ethernet Transformer Connector Pinout

Depending on the configuration of solder jumpers J36 und J37 on the phyCORE-167HS/E, the insertable jumpers JP37 und JP38 on the phyCORE Development Board HD200 have the following functions:

Jumper	phyCORE-167HS/E	phyCORE-167HS/E in compatibility mode phyCORE-167CR/CS
JP37	1 + 2	2 + 3
JP38	1 + 2	2 + 3

Table 69: Jumper for Ethernet Transformer Port

18 Revision History

Date	Version numbers	Changes in this manual
31-Jul-2002	Manual L-615e_1 PCM-018-Cx PCB# 1202.1 PCM-997-V2 PCB# 1179.3	First edition.
12-Nov-2002	Manual L-615e_2 PCM-018-Cx PCB# 1202.1 PCM-997-V2 PCB# 1179.3	Improved description in Section 5 for memory models. EEPROM/FRAM types and manufacturer information in section 8 corrected. Flash types and manufacturer information in section 10 revised. Section 16 added describing debugCORE-167HS/E.
10-Dec-2002	Manual L-615e_3 PCM-018-Cx PCB# 1202.1 PCM-997-V2 PCB# 1179.4	Error in Section 5, Memory Models, wait states corrected. Section 14 adapted to describe Development Board HD200 (PCM-997-V2) with PCB# 1179.4.
7-Feb-2003	Manual L-615e_4 PCM-018-Cx PCB# 1202.1 PCM-997-V2 PCB# 1179.4	New power consumption values in section 13. Error in table 56 (pin P1L7/A7) corrected. This revision history table added.
2-May-2003	Manual L-615e_5 PCM-018-Cx PCB# 1202.1 PCM-997-V2 PCB# 1179.4	Error in Figure 9, physical dimensions corrected.
24-Oct-2003	Manual L-615e_6 PCM-018-Cx PCB# 1202.1 PCM-997-V2 PCB# 1179.4	Error in Figure 1 and 2, jumpers and resistors corrected. Order code BL-011 replaced by BL-011 Error in tabel 61, Expansion Bus column, corrected Section 13, Technical Specification, operation temperature corrected.
7-Mai-2004	Manual L-615e_7 PCM-018-Cx PCB# 1202.2 PCM-997-V2 PCB# 1179.4	New PCB revision of PCM-018. Modifications to match new PCM-997 PCB# 1179.5. Description for new push button S3 and Jumper JP40 added in new <i>section 15.3.14</i> .

Index

/	Dimensions
/NMI119	E
/NMI Interrupt116 <i>A</i> A/D Converter25 <i>B</i>	EEPROM
BAT1 116 Battery Buffer 64 Battery Connector 116 Block Diagram 6 Bootstrap Loader 82	Chip Select
CAN Bus 54 CAN Interface 32, 54 CAN Transceiver 35, 54 CANH 54 CANH0 32 CANH1 32 CANL 54 CANL0 32 CANL1 32 CANRx 54 CANTX 54 COM Port 52	F Features
Compatibility Mode phyCORE-167CR/CS39 Concept of the Development Board70 Connector X4118 CS8900A65	Handshake Signals
D	Initialization Routine41
Development Board Connectors and Jumpers73	J J123

J1028	Jumper Settings23
J1128	L
J1230	_
J1330	LED D3107
J1430	M
J1532	Multi Durnosa Dush Putton 110
J1632	Multi-Purpose Push Button119
J1732	0
J1832	on-chip Flash25
J1932	on-chip UART27
J224	Operating Temperature67
J20A35	Operating Voltage67
J20B35	Oscillator Watchdog25
J2135	Oscillator watchdog23
J2235	P
J2335	P3.030
J2435	P3.130
J2636	Patch Field
J2836	PCA82C25154
J2937	PCM-00939
J324	phyCORE-connector9, 12
J3037	Physical Dimensions
J3138	Pin Assignment107
J3238	Pin Description9
J3339	Pinout
J3439	Plug P2A94
J3539	Plug P2B101
J3639	Port 0
J3739	Power Consumption67
J425	Power Supply80
J525	Power Supply to External
J625	Devices via Socket P1A87
J727	
J827	Programming Voltage25
J928	Q
JP17107	Quad-Connector
JP19116	
JP28116	R
JP40119	Real-Time Clock56
Jumper Configuration75	Reference Voltage25

Remote Download Source35 System Startup Configuration		
Remote Supervisory Chip61	T	
Reset Button75	1	
RS-232 Interface52	Technical Specifications66	
RS-232 Level52	TxD52	
RS-232 Transceiver52	$oldsymbol{U}$	
RTC28, 64		
RTC Interrupt Output28	U163	
RxD52	U1028, 56	
	U1154	
S	U1254	
S3119	U468	
SCL28, 56	U552	
SDA28, 56	U652	
Second CAN Interface101	U752	
Second Serial Interface30, 89	U861	
Serial EEPROM, Address32	U928, 59	
Serial EEPROM,	UART52	
Write Protection30	UART, external52	
Serial EEPROM/FRAM59	UART, on-chip52	
Serial Interface38	V	
Serial Interfaces52	•	
Si9200EY54	V _{AGND} 25	
Silicon Serial Number116	V _{AREF} 25	
SMT Connector9	VBAT64	
Socket P1A (First RS-232)84	Voltage Supervisor Chip64	
Socket P1B (Second RS-232)89	VPD64	
Storage Temperature67	$oldsymbol{W}$	
System Configuration41		
System Initialization41	Weight67	

Document:	phyCORE-167HS/E	
Document nu	ımber: L-615e_7, May 2004	
How would y	you improve this manual?	
Did you find	any mistakes in this manual?	page
Submitted by Customer nur		
Name:		
Company:		
Address:		
Return to:	PHYTEC Technologie Holding AG Postfach 100403 D-55135 Mainz, Germany Fax: +49 (6131) 9221-33	

