

phyCORE-AM335

Hardware Manual

Document No.:	L-//1e.A3
SOM Prod. No.:	PCM-051
SOM PCB No.:	1358.4
CB Prod. No.:	PCM-953
CB PCB No.:	1359.3

GPIO Expansion Board Prod. No.: PCM-957

Edition: March 2020

A product of a PHYTEC Technology Holding company

Copyrighted products are not explicitly indicated in this manual. The absence of the trademark (, or [®]) and copyright (©) symbols does not imply that a product is not protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this manual.

The information in this document has been carefully checked and is considered to be entirely reliable. However, PHYTEC Messtechnik GmbH assumes no responsibility for any inaccuracies. PHYTEC Messtechnik GmbH neither gives any guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of this manual or its associated product. PHYTEC Messtechnik GmbH reserves the right to alter the information contained herein without prior notification and accepts no responsibility for any damages that might result.

Additionally, PHYTEC Messtechnik GmbH offers no guarantee nor accepts any liability for damages arising from the improper usage or improper installation of the hardware or software. PHYTEC Messtechnik GmbH further reserves the right to alter the layout and/or design of the hardware without prior notification and accepts no liability for doing so.

© Copyright 2020 PHYTEC Messtechnik GmbH, D-55129 Mainz.

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and storage or processing in computer systems, in whole or in part - are reserved. No reproduction may occur without the express written consent from PHYTEC Messtechnik GmbH.

	EUROPE	NORTH AMERICA	FRANCE
Address:	PHYTEC Messtechnik GmbH	PHYTEC America LLC	PHYTEC France
	Robert-Koch-Str. 39	203 Parfitt Way SW	17, place Saint-Etienne
	D-55129 Mainz	Bainbridge Island, WA 98110	F-72140 Sillé-le-Guillaume
	GERMANY	USA	FRANCE
Sales:	+49 6131 9221-32	+1 800 278-9913	+33 2 43 29 22 33
	sales@phytec.de	sales@phytec.com	info@phytec.fr
Technical	+49 6131 9221-31	+1 206 780-9047	support@phytec.fr
Support:	support@phytec.de	support@phytec.com	
Fax:	+49 6131 9221-33	+1 206 780-9135	+33 2 43 29 22 34
Web Site:	http://www.phytec.de http://www.phytec.eu	http://www.phytec.com	http://www.phytec.fr

	INDIA	CHINA
Address:	PHYTEC Embedded Pvt. Ltd. No. 1688, 25 th A Cross 27 th Main, 2 nd Sector ,0pp. PEP School V2, HRS Layout Bangalore 560102 INDIA	PHYTEC Information Technology (Shenzhen) Co. Ltd. 2106A, Block A, Tianxia Jinniu Square, Taoyuan Road, Nanshan District, 518026 Shenzhen CHINA
Sales:	+91-80-4086 7046/48 sales@phytec.in	+86-755-6180-2110 sales@phytec.cn
Technical Support:	+91-80-4086 7047 support@phytec.in	support@phytec.cn
Fax:		+86-755-3395-5999
Web Site:	http://www.phytec.in	http://www.phytec.cn

3rd Edition March 2020

List o	of Fig	ures			. iv
List o	of Tab	les	•••••		V
Conv	entio	ns, Abb	reviation	s and Acronyms	viii
Prefa	ice	•••••			. xi
1	Intro	duction	l		1
	1.1	Feature	s of the pl	1vCORE-AM335x	2
	1.2	Block D	iagram	~	4
	1.3	Compor	ient Place	ment Diagram	5
	1.4	Minimu	m Require	ments to Operate the phyCORE-AM335x	7
2	Pin D)escripti	on		8
3	Jumj	oers	• • • • • • • • • • • • •		18
4	Powe	er			23
	4.1	Primary S	System Pov	ver (VDD_5V_IN)	.23
	4.2	Backup P	ower (VBA	r_in_4rtc)	.23
	4.3	Power M	anagemen	t IC (U4)	.23
		4.3.1	Power Do	mains	.24
		4.3.2	Real Time	e Clock (RTC)	.25
		4.3.3	Power Ma	nagement	.26
		4.3.4	External	Battery Charging	.26
		4.3.5	Reference	e Voltages	.26
	4.4	Real IIm	1e Clock U	ptions (RTC)	.27
		4.4.1	FMIL KIL		.27
		4.4.2 / / 3		ХТС ?TC	.27
		4.4.5	Power-Or	n Wake	.27
5	Svste	em Confi	iguration	and Booting	. 28
6	Syste	em Mem	orv		30
Ū	6 1		דעוס אין	\	30
	0.1 6 2		ash Mome	/ mv (II10)	.50
	0.2	6.2.1	NAND Fla	sh Lock Control (.12)	.31
		6.2.2	I ² C EEPRC)M (U6)	.31
			6.2.2.1	Setting the EEPROM Lower Address Bits (J7, J8)	.31
			6.2.2.2	EEPROM Write Protection Control (J9)	.32
		6.2.3	SPI Flash	Memory (U5)	.32
			6.2.3.1	SPI Write Protect Control (J4)	.32
			6.2.3.2	SPI Hold Control (J3)	.33
		6.2.4	Memory N	1odel	.33
7	SD/N	IMC Card	d Interfac	es	. 34
8	Seria	l Interfa	aces		. 35
		8.1.1	Universal	Asynchronous Receiver/Transmitter Interfaces (UARTs)	.35
		8.1.2	USB OTG	Interface	.36
		8.1.3	Ethernet	Interfaces	.36
			8.1.3.1	Ethernet1	.37
			0 1 2 2	8.1.3.1.1 Configuring the Ethernet1 Interface Mode	.38
		011	8.1.3.2	Ltnernet2	.39
		ö.1.4	riondus.	•••••••••••••••••••••••••••••••••••••••	.40

	8.1.5	I ² C Interface	, 40
	8.1.6	SPI Interfaces	. 41
	8.1.7	Controller Area Network (CAN) Interfaces	. 41
	8.1.8	Multichannel Audio Serial Ports (McASP)	. 43
9	General Pur	pose I/Os	44
	0 1 Analog	Innuts	45
10	Debug Inter	face (X2)	46
11	Display Inter	чба со	70
11	Display Inte		48
	11.1 Paralle	l Display Interfaces	. 48
	11.2 louch \$	Screen Controller	. 49
12	Technical Sp	Decifications	50
13	Integrating	and Handling the phyCORE-AM335x	52
	13.1 Integra	iting the phyCORE-AM335x	. 52
	13.2 Handli	ng the phyCORE-AM335x	. 54
14	PCM-953/pł	nyCORE-AM335x Carrier Board	55
	14.1 Concen	t of the phyCORE Carrier Board	55
	14.2 Feature	م م	56
	14.3 Overvie	w of the nhvCORF-AM335x Perinherals	57
	14.3.1	Connector and Pin Headers	. 58
	14.3.2	Buttons and Switches	. 59
	14.3.3	LEDs	. 61
	14.3.4	 Jumpers	. 62
	14.3.5	phyCORE-AM335x Carrier Board Bus Enable Decoder	. 66
	14.4 phvCOF	RE-AM335x Carrier Board Functional Components	. 68
	14.4.1	phyCORE-AM335x SOM Connectivity (X1, X2)	. 68
	14.4.2	Power	. 70
		14.4.2.1 Wall Adapter Input (X3)	. 71
		14.4.2.2 Power Management	. 72
		14.4.2.3 VBAT	. 72
	14.4.3	Ethernet Connectivity	. 72
		14.4.3.1 Ethernet1 (X12)	. 73
		14.4.3.2 Ethernet2 (X9)	. 74
	14.4.4	EtherCAT (X10 and X11)	. 75
	14.4.5	Profibus (X19)	. 76
	14.4.6	RS-232 (X18)	. 77
	14.4.7	CAN (X13)	. 78
	14.4.8	Universal Serial Bus (USB) (X7, X8)	. 79
		14.4.8.1 USB0 (X7)	. 79
		14.4.8.2 USB1 (X8)	. 80
	14.4.9	I ² C	. 81
	14.4.1	O SPI (X5)	. 82
	14.4.1	1 JTAG (X21)	. 83
	14.4.12	2 LCD Display / Touch Screen (X4, X31)	. 84
		14.4.12.1 PHYTEC Display Interface (PDI) Data Connector (X4)	, 85
		14.4.12.2 PHYTEC Display Interface (PDI) Power Connector (X31)	. 87
		14.4.12.3 AM335x LCD Interface Display (X40)	. 88
		14.4.12.4 Touch Screen Connectivity	. 88

14.4.13 Secur	e Digital Memory (SD / MultiMedia Card (MMC) (X2	0)89
14.4.14 Audio	(X14, X15, X16, X17)	
14.4.15 WiFi (X27)	
15 PCM-957 GPIO Exp	ansion Board	
15.1 GPIO Expansio	on Board Analog Signals	
15.2 GPIO Expansio	on Board Control Signals	
15.3 GPIO Expansio	on Board GPIO Signals	94
15.4 GPIO Expansio	on Board GPMC Signals	
15.5 GPIO Expansio	on Board Power Signals	
15.6 GPIO Expansio	on Board Serial Interfaces	
15.7 Signals not Co	nnected to GPIO Expansion Board	
16 Revision History	·	
Index		

List of Figures

Figure 1:	Block Diagram of the phyCORE-AM335x4
Figure 2:	phyCORE-AM335x Component Placement (top)5
Figure 3:	phyCORE-AM335x Component Placement (bottom)6
Figure 4:	Pinout of the phyCORE Connector (top view with cross section insert)9
Figure 5:	Typical Jumper Pad Numbering Scheme 18
Figure 6:	SOM Jumper Locations (top) 19
Figure 7:	Power Supply Diagram 25
Figure 8:	JTAG Interface X2 (top view) 46
Figure 9:	Physical Dimensions
Figure 10:	phyCORE-AM335x Footprint53
Figure 11:	phyCORE-AM335x Carrier Board Connectors and Buttons (top view)
Figure 12:	Carrier Board Button Locations 59
Figure 13:	S5 Switch location
Figure 14:	Carrier Board LEDs 61
Figure 15:	Jumper Numbering Scheme 62
Figure 16:	Carrier Board Jumper locations 63
Figure 17:	Bus Enable Jumpers and LED67
Figure 18:	phyCORE-AM335x SOM Connectivity to Carrier Board
Figure 19:	+5 VDC Power Input Connector 70
Figure 20:	Ethernet1 Connector
Figure 21:	Ethernet2 Connector
Figure 22:	EtherCAT Connector
Figure 23:	Profibus Connector
Figure 24:	RS-232 Connector
Figure 25:	CAN Connector and Jumpers 78
Figure 26:	USB Connectors and Jumpers79
Figure 27:	X5 GPIO Expansion Board Connectors 82
Figure 28:	JTAG Connector
Figure 29:	Display Connectors
Figure 30:	SD / MMC Connector (X20) 89
Figure 31:	Audio connectors (X14, X15, X16, X17)
Figure 32:	WiFi Connector

List of Tables

Table 1:	Abbreviations and Acronyms used in this Manualix
Table 2:	Types of Signals x
Table 3:	Pinout of the phyCORE Connector X3, Row A10
Table 4:	Pinout of the phyCORE Connector X3, Row B12
Table 5:	Pinout of the optional phyCORE Connector X1, Row A14
Table 6:	Pinout of the optional phyCORE Connector X1, Row B16
Table 7:	SOM Jumper Setting20
Table 8:	External Supply Voltages24
Table 9:	PMIC Generated Voltages24
Table 10:	Power Management Signals26
Table 11:	Boot Device Order of AM335x Module29
Table 12:	NAND GPMC Signal Map
Table 13:	NAND Flash Lock Control via J231
Table 14:	U6 EEPROM I ² C Address via J7 and J832
Table 15:	EEPROM Write Protection States via J932
Table 16:	SPI Flash Write-Protection via J432
Table 17:	SPI Hold Control via J333
Table 18:	SD/MMC Interface Signal Locations
Table 19:	UART Signal Locations
Table 20:	USB OTG Signal Locations36
Table 21:	Ethernet1 Signal Locations37
Table 22:	Ethernet1 TTL Signal Locations
Table 23:	Jumper Configurations for MII and RMII modes
Table 24:	Resistor Configurations for MII and RMII modes38
Table 25:	Crystal Configurations for MII and RMII modes39
Table 26:	Ethernet2 Signal Locations
Table 27:	Profibus Signal Location Options40
Table 28:	I ² C Interface Signal Locations41
Table 29:	I ² C Addresses in Use41
Table 30:	SPIO Interface Signal Locations41
Table 31:	DCANO and DCAN1 Signal Locations42
Table 32:	McASP Signal Locations43
Table 33:	Dedicated GPIO Signal Locations44

Table 34:	Analog Input Signals	45
Table 35:	JTAG Connector X2 Signal Assignment	4 7
Table 36:	Location of JTAG Signals on the optional phyCORE-Connector	4 7
Table 37:	Parallel Display Interface Signal Locations	4 8
Table 38:	AIN[3:] Signal Location	<i></i> 49
Table 39:	phyCORE-AM335x Carrier Board Connectors and Pin Headers	58
Table 40:	phyCORE-AM335x Carrier Board push button descriptions	59
Table 41:	phyCORE-AM335x S5 Switch configuration6	51
Table 42:	phyCORE-AM335x Carrier Board LED descriptions6	52
Table 43:	phyCORE-AM335x Carrier Board Jumper description ¹² 6	54
Table 44:	Interfaces Enabled with JP3 and JP4 6	57
Table 45:	Bus Switch Enable Status LEDs 6	58
Table 46:	Specifically used Pins on the phyCORE Connector	59
Table 47:	VCC_3V3 Jumper Settings	71
Table 48:	Carrier Board Voltage Domains	71
Table 49:	Ethernet Connectivity - JP3 and JP4 settings	72
Table 50:	EtherCAT - JP3 and JP4 settings	75
Table 51:	Profibus Jumpers	76
Table 52:	USB Connectors for Different Operating Modes 8	30
Table 53:	I ² C Interface Signals 8	31
Table 54:	I2C0 Reserved Addresses 8	31
Table 55:	JTAG Connector X1 Pin Descriptions 8	33
Table 56:	Display Connectors - JP3 and JP4 settings 8	35
Table 57:	PDI Data Connector X4 Signal Description 8	36
Table 58:	Auxiliary Interfaces at PDI Data Connector X4 8	37
Table 59:	PDI Power Connector X31 Signal Description 8	37
Table 60:	AM335x LCD Interface Display Connector X40 8	38
Table 61:	Audio Connectors) 1
Table 62:	WiFi - JP3 and JP4 setting) 2
Table 63:	WiFi Module Signals (X27)) 2
Table 64:	GPIO Expansion Board Analog Signal Map) 3
Table 65:	GPIO Expansion Board Control Signal Map) 3
Table 66:	GPIO Expansion Board GPIO Signal Map	94
Table 67:	GPIO Expansion Board GPMC Signal Map) 5
Table 68:	GPIO Expansion Board Power Signal Map) 5

Table 69:	GPIO Expansion Board Serial Interfaces Signal Map95	5
Table 70:	AM335x SOM Signals not routed to GPIO Expansion Connector X5	5

Conventions, Abbreviations and Acronyms

This hardware manual describes the PCM-051 System on Module (SOM), hereby referred to as phyCORE-AM335x. The manual specifies the phyCORE-AM335x 's design and function. Precise specifications for the Texas Instruments AM335x microcontrollers can be found in Texas Instrument's AM335x *Data Sheet and Technical Reference Manual*.

Conventions

The conventions used in this manual are as follows:

- Signals that are preceded by an "n", "/", or "#"character (e.g.: nRD, /RD, or #RD), or that have a dash on top of the signal name (e.g.: RD) are designated as active low signals. That is, their active state is when they are driven low, or are driving low.
- A "0" indicates a logic zero or low-level signal, while a "1" represents a logic one or high-level signal.
- The hex-numbers given for addresses of I²C devices always represent the 7 MSB of the address byte. The correct value of the LSB which depends on the desired command (read (1), or write (0)) must be added to get the complete address byte. E.g. given address in this manual 0x41 => complete address byte = 0x83 to read from the device and 0x82 to write to the device.
- Tables which describe jumper settings show the default position in **bold**, **blue text**.
- Text in *blue italic* indicates a hyperlink within, or external to the document. Click these links to quickly jump to the applicable URL, part, chapter, table, or figure.
- Text in *bold italic* indicates an interaction by the user, which is defined on the screen.
- Text in Consolas indicates an input by the user, without a premade text or button to click on.
- Text in *italic* indicates proper names of development tools and corresponding controls (windows, tabs, commands etc.) used within the development tool, no interaction takes place.
- White Text on black background shows the result of any user interaction (command, program execution, etc.)

Abbreviations and Acronyms

Many acronyms and abbreviations are used throughout this manual. Use the table below to navigate unfamiliar terms used in this document.

Abbreviation	Definition	
BSP	Board Support Package (Software delivered with the Development Kit including an operating system (Windows or Linux) preinstalled on the module and Development Tools).	
СВ	Carrier Board; used in reference to the phyCORE-AM335x Development Kit Carrier Board.	
DFF	D flip-flop	
EMB	External memory bus	
EMI	Electromagnetic interference	
GPI	General purpose input	
GPIO	General purpose input and output	
GP0	General purpose output	
IRAM	Internal RAM; the internal static RAM on the Texas Instruments AM335x microcontroller	
J	Solder jumper; these types of jumpers require solder equipment to remove and place	
JP	Solderless jumper; these types of jumpers can be removed and placed by hand with no special tools	
РСВ	Printed circuit board	
PDI	PHYTEC Display Interface; defined to connect PHYTEC display adapter boards, or custom adapters	
PEB	PHYTEC Extension Board	
PMIC	Power management IC	
PoE	Power over Ethernet	
PoP	Package on Package	
POR	Power-on reset	
RTC	Real-time clock	
SMT	Surface mount technology	
SOM	System on Module; used in reference to the PCM-051 / phyCORE-AM335x System on Module	
Sx	User button Sx (e.g. S1, S2, etc.) used in reference to the available user buttons, or DIP switches on the carrier board	
Sx_y	Switch y of DIP switch Sx; used in reference to the DIP switch on the carrier board	
VBAT	SOM standby voltage input	

Table 1:Abbreviations and Acronyms used in this Manual

Different types of signals are brought out at the phyCORE-Connector. The following table lists the abbreviations used to specify the type of a signal.

Type of Signal	Description	Abbreviation
Power	Supply voltage	PWR
Ref-Voltage	Reference voltage	REF
USB-Power	USB voltage	USB
Input	Digital input	IN
Output	Digital output	OUT
Input with pull-up	Input with pull-up, must only be connected to GND (jumper or open-collector output).	IPU
Input / output	Bidirectional input / output	IO
5 V Input with pull-down	5 V tolerant input with pull-down	5V_PD
5 V Input with pull-up	5 V tolerant input with pull-up	5V_PU
LVDS	Differential line pairs 100 Ohm LVDS Pegel	LVDS
Differential 90 Ohm	Differential line pairs 90 Ohm	DIFF90
Differential 100 Ohm	Differential line pairs 100 Ohm	DIFF100
Analog	Analog input or output	Analog

Table 2:Types of Signals

Note:

We refrain from providing detailed part specific information within this manual, which can be subject to continuous changes, due to part maintenance for our products. Please read the paragraph "**Product Change Management and information in this manual on parts populated on the SOM**" within the Preface.

The BSP delivered with the phyCORE-AM335x usually includes drivers and/or software for controlling all components such as interfaces, memory, etc. Therefore programming close to hardware at register level is not necessary in most cases. For this reason, this manual contains no detailed description of the controller's registers, or information relevant for software development. Please refer to the *AM335x Technical Reference Manual*, if such information is needed to connect customer designed applications.

Preface

As a member of PHYTEC's new phyBOARD[®] product family, the phyCORE-AM335x is one of a series of PHYTEC System on Modules (SBCs) that offer off-the-shelf solutions for a huge variety of industrial applications. The new phyBOARD[®] product family consists of a series of extremely compact embedded control engines featuring various processing performance classes. All phyBOARDs are rated for industry, cost optimized, and offer long-term availability. The phyCORE-AM335x is one of currently six industrial-grade carrier boards which are suitable for series production and that have been realized in accordance with PHYTEC's new SBCplus concept. It is an excellent example of this concept.

SBCplus Concept

The SBCplus concept was developed to meet fine differences in customer requirements with little development effort and thus greatly reduce the time-to-market.

Core of the SBCplus concept is the SBC design library (a kind of construction set) that consists of a great number of function blocks (so-called "building blocks") which are constantly refined. The recombination of these function blocks allows PHYTEC to develop a customer specific SBC within a short time. Thus, PHYTEC is able to deliver production-ready custom Single Board Computers within a few weeks at very low costs.

The already developed SBCs, such as the phyCORE-AM335x, each represent an intersection of different customer wishes. Because of this, all necessary interfaces are already available on the standard versions. This allows them to be integrated in a large number of applications without modification. For any necessary detail adjustment, extension connectors are available to enable adding a wide variety of functions.

Customized Expandability from PHYTEC

Common interface signals route to standard connector interfaces on the carrier board such as Ethernet, , RS-232, and audio. Due to the easily modifiable phyBOARD design approach (see "*SBCplus concept*"), these plug-and-play interfaces can be readily adapted in customer-specific variants according to end system requirements.

Some signals from the processor populating the SOM also extend to the expansion and A/V connectors of the phyCORE-AM335x. This provides a customized expandability according to end user requirements. Expandability is made even easier by available plug-and-play expansion modules from PHYTEC.

The default orientation of the expansion bus connectors is parallel and on the top side of the carrier board PCB. However, in custom configurations, the connectors can be mounted on the PCB's underside. Connectors in perpendicular orientation can also populate the top or underside of the PCB. This enables maximum flexibility for orienting expansion modules on the phyCORE-AM335x, as well as integrating the system into a variety of end application physical envelopes and form factors.

Easy Integration of Display und Touch

The phyCORE and its expansion modules enable easy connection of parallel or LVDS based displays as well as resistive or capacitive touch screens.

OEM Implementation

Implementation of an OEM-able SBC subassembly as the "core" of an embedded design allows for an increased focus on hardware peripherals and firmware without expending resources to "re-invent" microcontroller circuitry. Furthermore, much of the value of the phyCORE SBC lies in its layout and test.

Software Support

Production-ready Board Support Packages (BSPs) and Design Services for our hardware will further reduce development time and risk and allows for an increased focus on the product expertise.

Ordering Information

The part numbering of the phyCORE has the following structure.¹

RAM (Size / Type)0=256 MB (400 MHz)1=512 MB (400 MHz)1=512 MB FLASH1=256 MB FLASH1=256 MB FLASH2=512 MB FLASH3=1 GB FLASH4=2 GB FLASH4=2 GB FLASH5=no SPI FLASH1=8 MB SPI FLASH1=8 MB SPI FLASH1=8 MB SPI FLASH2=AM33591=AM33582=AM33545=AM3352Processor Clock Rate 0 0=no EEPROM1=600 MHz2=720 MHzEEPROM Size 0 0=no USB 01=2 x USB OTGEthernet 0 1=2 x USB OTGEthernet 0 0=no external RTC1=Ethernet 10/100 MBit -RMII2=no USB 01=JTAG Connector0=no Varnishing1=X1 and X3 mounted1=without X1 (Eth2; MMC2, UART3, GPMC)VarnishingVarnishing1=Varnishing1=Commercial Grade2=Commercial Grade4=Industrial GradeVersionHo <th></th> <th></th> <th>PCM-051-121021111000C.</th>			PCM-051-121021111000C.
RAM (Size / Type) 0 = 256 MB (400 MHz) 1 = 512 MB (400 MHz) NAND-FLASH Size 0 0 0 = 128 MB FLASH 1 = 256 MB FLASH 2 = 512 MB FLASH 3 = 1 GB FLASH 3 = 1 GB FLASH 4 = 2 GB FLASH 50 = no SPI FLASH 60 = AM3358 2 = AM3358 2 = AM3354 5 = AM3352 Processor Clock Rate 0 0 = no EEPROM 1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = 0 = no EEPROM USB OTG 0 = 0 = no USB 1 = 2 x USB OTG 2 = no USB 1 = 2 x USB OTG			
0 = 256 MB (400 MHz) 1 = 512 MB (400 MHz) NAND-FLASH Size 0 0 = 128 MB FLASH 1 = 256 MB FLASH 2 = 512 MB FLASH 3 = 1 GB FLASH 2 = 512 MB FLASH 3 = 1 GB FLASH 4 = 2 GB FLASH SPI-FLASH Size 0 - 0 = no SPI FLASH 1 = 8 MB SPI FLASH 2 = AM3356 4 = AM3354 5 = AM3352 Processor Clock Rate - 0 = no EEPROM 1 = 600 MHz 2 = 720 MHz EEPROM Size - - 0 = no USB 1 = x USB OTG 2 = no USB 1 = 2 x USB OTG 0 = no Ethernet	RAM	(Size	e / Type)
1 = 512 MB (400 MHz) NAND-FLASH Size	0	=	256 MB (400 MHz)
NAND-FLASH Size 0 = 128 MB FLASH 1 = 256 MB FLASH 2 = 512 MB FLASH 3 = 1 GB FLASH 3 = 1 GB FLASH 4 = 2 GB FLASH SPI-FLASH Size	1	=	512 MB (400 MHz)
0 = 128 MB FLASH 1 = 266 MB FLASH 2 = 512 MB FLASH 3 = 1 GB FLASH 4 = 2 GB FLASH 5PI-FLASH Size	NAND	D-FL	ASH Size
1 = 256 MB FLASH 2 = 512 MB FLASH 3 = 1 GB FLASH 4 = 2 GB FLASH 5PI-FLASH Size 0 = no SPI FLASH 1 = 8 MB SPI FLASH 1 = AM3359 2 = AM3357 3 = AM3356 4 = AM3354 5 = AM3354 5 = AM3354 5 = AM3354 5 = AM3354 5 = AM3354 1 = 600 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII 1 = external RTC 0 = no external RTC 1 = on orternal RTC 1 = on orternal RTC 0 = no JTAG Connector 1 = JTAG Connector 1 = JTAG Connector 0 = no VArnishing 1 = Varnishing 1 = Varnishing 1 = Varnishing 1 = Commercial Grade 2 = Commercial Grade 1 = Industrial Grade Version	0	=	128 MB FLASH
2 = 512 MB FLASH 3 = 1 GB FLASH 4 = 2 GB FLASH SPI-FLASH Size	1	=	256 MB FLASH
3 = 1 GB FLASH 4 = 2 GB FLASH SPI-FLASH Size 0 = no SPI FLASH Controller 0 = AM3359 1 = AM3358 2 = AM3356 4 = AM3356 4 = AM3354 5 = AM3352 Processor Clock Rate 0 = 500 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no external RTC 1 = external RTC 1 = external RTC 1 = external RTC 1 = JTAG Connector 1 = JTAG Connector 1 = JTAG Connector 1 = JTAG Connector 0 = no Varnishing 1 = Varnishing 1 = Varnishing 1 = Commercial Grade 2 = Commercial Grade 2 = Commercial Grade 4 = Industrial Grade 2 = Commercial Grade	2	=	512 MB FLASH
4 = 2 GB FLASH SPI-FLASH Size	3	=	1 GB FLASH
SPI-FLASH Size 0 = no SPI FLASH 1 = 8 MB SPI FLASH Controller 0 = AM3359 2 = AM3358 2 = AM3356 4 = AM3352 Processor Clock Rate 0 = 500 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size	4	=	2 GB FLASH
0 = no SPI FLASH 1 = 8 MB SPI FLASH Controller 0 = AM3359 1 = AM3358 2 = AM3357 3 = AM3354 5 = AM3352 Processor Clock Rate	SPI-F	LAS	H Size
1 = 8 MB SPI FLASH Controller 0 = AM3359 1 = AM3358 2 = AM3357 3 = AM3356 4 = AM3354 5 = AM3352 Processor Clock Rate 0 = 500 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 1 = external RTC 1 = external RTC 1 = other and the additional states of the ad	0	=	no SPI FLASH
Controller 0 = AM3359 1 = AM3358 2 = AM3357 3 = AM3356 4 = AM3354 5 = AM3352 Processor Clock Rate	1	=	8 MB SPI FLASH
0 = AM3359 1 = AM3358 2 = AM3357 3 = AM3356 4 = AM3352 Processor Clock Rate	Contr	rolle	r
1 = AM3358 2 = AM3357 3 = AM3356 4 = AM3352 Processor Clock Rate 0 = 500 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG Ethernet 0 = no Ethernet 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Tob Ethernet 1 = Ethernet 10/100 MBit -MII RTC	0	=	AM3359
2 = AM3357 3 = AM3356 4 = AM3354 5 = AM3352 Processor Clock Rate	1	=	AM3358
3 = AM3356 4 = AM3354 5 = AM3352 Processor Clock Rate	2	=	AM3357
A - AM3354 5 = AM3352 Processor Clock Rate 0 = 500 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Thernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -RMII 2 = Thernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -RMII 2 = Thernet 10/100 MBit -RMII 2 = Thernet 10/100 MBit -RMII 2 = No Vernial RTC 0 = no Varnishing 1 = Varnishing 1 = Varnishing 2 = no Varnishing 1 = Varnishing 2 = Commercial Grade 4 = Industrial Grade	3	=	AM3356
Processor Clock Rate 0 = 500 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 1 = external RTC 1 = external RTC 0 = no JTAG Connector 1 = JTAG Connector 1 = JTAG Connector 0 = x1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = no Varnishing 1 = Varnishing 1 = Commercial Grade 1 = Industrial Grade Version	4 5	_	AM3354
Processor Clock Rate 0 = 500 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = 2 x USB OTG Ethernet 0 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 0 = no external RTC 1 = external RTC Debug Interface 0 0 = no JTAG Connector 1 = JTAG Connector phyCORE Connectors 0 0 = no Varnishing 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 1 = Varnishing 2 = no Varnishing 1 = Industrial Grade 2 = Commercial Grade 1 = Indu	5	-	AWI3332
0 = 500 MHz 1 = 600 MHz 2 = 720 MHz EEPROM Size	Proce	esso	r Clock Rate
1 = 600 MHz 2 = 720 MHz EEPROM Size 0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 1 = external RTC 0 = no external RTC 1 = external RTC Debug Interface 0 = no JTAG Connector 1 = JTAG Connector 1 = JTAG Connector 0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = no Varnishing 1 = Varnishing C = Commercial Grade I = Industrial Grade Version	0	=	500 MHz
2 = 720 MHZ EEPROM Size	1	=	600 MHz
EEPROM Size 0 1 2 0 1 2 2 1 2 2 2 2 3 0 1 2 2 2 3 0 1 2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1 2 3 4 4 5 4 4 5 5 5 5 5 6 6 1 5 7 6 6 1 6 7 7 7 7 7 7 7 7 7 7 7 8 8 8	2	=	720 MHz
0 = no EEPROM 1 = 4 KB EEPROM USB OTG 0 = 0 = no USB 1 = 2 x USB OTG Ethernet 0 = 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = 0 = no external RTC 1 = external RTC 0 = no JTAG Connector 1 = JTAG Connector 0 = x1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = <td>EEPR</td> <td>ROM</td> <td>Size</td>	EEPR	ROM	Size
1 = 4 KB EEPROM USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 0 = no Ethernet 1 0 = no Ethernet 1 1 = Ethernet 10/100 MBit -RMII 2 2 = Ethernet 10/100 MBit -RMII 1 2 = no external RTC 1 1 0 = no JTAG Connector 1 1 1 0 = X1 and X3 mounted 1 1 1 1 1 = without X1 (Eth2; MMC2, UART3, GPMC) 1 1 2 <t< td=""><td>0</td><td>=</td><td>no EEPROM</td></t<>	0	=	no EEPROM
USB OTG 0 = no USB 1 = 2 x USB OTG Ethernet 0 = no Ethernet 0 = no Ethernet 1 1 = Ethernet 10/100 MBit -RMII 1 2 = Ethernet 10/100 MBit -RMII 1 2 = Ethernet 10/100 MBit -MII 1 2 = Interface 1 1 0 = no ATAG Connector 1 0 = NJTAG Connector 1 0 = X1 and X3 mounted 1 1 = without X1 (Eth2; MMC2, UART3, GPMC) 1 Varnishing - - No Varnishing 1 = Varnishing - 2 = Commercial Grade - 2 = Industrial Grade -	1	=	4 KB EEPROM
0 = no USB 1 = 2 x USB OTG Ethernet 0 = 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = 0 = no external RTC 1 = external RTC Debug Interface 0 0 = 0 = no JTAG Connector 1 = JTAG Connectors 0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = 0 = 0 = no Varnishing 1 = Varnishing C = D = D	USB	OTG	
1 = 2 x USB OTG Ethernet 0 = no Ethernet 0 = no Ethernet 1 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 1 = external RTC D = no JTAG Connector 1 = JTAG Connector 0 = no JTAG Connector 1 = JTAG Connector 0 = NATAG Connector 0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing	0	=	no USB
Ethernet 0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII 2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 0 = no external RTC 0 = no JTAG Connector 1 = JTAG Connector 0 = NJTAG Connector 1 = JTAG Connector 0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing	1	=	2 x USB OTG
0 = no Ethernet 1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 0 = no external RTC 1 = external RTC Debug Interface	Ether	net	
1 = Ethernet 10/100 MBit -RMII 2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 0 = no external RTC 1 = external RTC Debug Interface	0	=	no Ethernet
2 = Ethernet 10/100 MBit -MII RTC 0 = no external RTC 1 = external RTC Debug Interface 0 = no JTAG Connector 1 = JTAG Connector 1 phyCORE Connectors 0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = no Varnishing 0 = no Varnishing	1	=	Ethernet 10/100 MBit -RMII
RTC 0 = no external RTC 1 = external RTC Debug Interface 0 = no JTAG Connector 1 = JTAG Connector phyCORE Connectors 0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = no Varnishing 1 = Varnishing C = Commercial Grade I = Industrial Grade Version A0	2	=	Ethernet 10/100 MBit -MII
0 = no external RTC 1 = external RTC Debug Interface	RTC		
1 = external RTC Debug Interface	0	=	no external RTC
Debug Interface 0 = no JTAG Connector 1 = JTAG Connector phyCORE Connectors	1	=	external RTC
0 = no JTAG Connector 1 = JTAG Connector phyCORE Connectors	Dehu	a Int	erface
1 = JTAG Connector phyCORE Connectors	0	<u> </u>	no ITAG Connector
phyCORE Connectors 0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = no Varnishing 0 = no Varnishing	1	=	JTAG Connector
0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing 0 = no Varnishing 1 = Varnishing 0 = no Varnishing 1 = Varnishing C = Commercial Grade I = Industrial Grade		000	Connectore
0 = X1 and X3 mounted 1 = without X1 (Eth2; MMC2, UART3, GPMC) Varnishing	pnyC		V4 and V2 mounted
Varnishing 0 = no Varnishing 1 = Varnishing 1 = Varnishing 1 = Varnishing 2 = Commercial Grade 2 = Industrial Grade 4 = Industrial Grade	1	=	
Varnishing 0 = no Varnishing 1 = Varnishing Temperature Range	1	-	
0 = no Varnishing 1 = Varnishing Temperature Range C = Commercial Grade = Industrial Grade Version	Varni	shin	g
1 = Varnishing Temperature Range C = Commercial Grade I = Industrial Grade Version	0	=	no Varnishing
Temperature Range C = Commercial Grade = Industrial Grade Version A0	1	=	Varnishing
C = Commercial Grade I = Industrial Grade Version	Temp	oerat	ure Range
I = Industrial Grade Version	c .	=	Commercial Grade
Version	I	=	Industrial Grade
۵ <u>۵</u>	Vorei	on	
	A0	5.1	

^{1:} The structure shows the ordering options available as of the printing of this manual. Additional ordering options may have been added. Please contact our sales team to get an update on the ordering options available.

Product Specific Information and Technical Support

In order to receive product specific information on all future changes and updates, we recommend registering at:

http://www.phytec.de/de/support/registrierung.html http://www.phytec.eu/europe/support/registration.html

For technical support and additional information concerning your product, please visit the support section of our website which provides product specific information, such as errata sheets, application notes, FAQs, etc.

https://www.phytec.de/produkt/system-on-modules/phycore-am335x-download https://www.phytec.eu/product-eu/system-on-modules/phycore-am335x-download

Other Products and Development Support

Aside from the new phyBOARD[®] family, PHYTEC supports a variety of 8-, 16-, and 32-bit controllers in two ways:

- (1) as the basis for Rapid Development Kits which serve as a reference and evaluation platform
- (2) as insert-ready, fully functional OEM modules, which can be embedded directly into the user's peripheral hardware design.

Take advantage of PHYTEC products to shorten time-to-market, reduce development costs, and avoid substantial design issues and risks. With this new innovative, full system solution, new ideas can be brought to market in the most timely and cost-efficient manner.

For more information go to:

http://www.phytec.de/support/ueberblick https://www.phytec.eu/support/support-overview

Declaration of Electro Magnetic Conformity of the PHYTEC phyCORE-AM335x

PHYTEC Single Board Computers (henceforth products) are designed for installation in electrical appliances, as part of custom applications, or as dedicated Evaluation Boards (i.e.: for use as a test and prototype platform for hardware/software development) in laboratory environments.

Caution!

PHYTEC products lacking protective enclosures are subject to damage by ESD and, therefore, must only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD-dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Moreover, PHYTEC products should not be operated without protection circuitry if connections to the product's pin header rows are longer than 3 m.

PHYTEC products fulfill the norms of the European Union's Directive for Electro Magnetic Conformity only in accordance to the descriptions and rules of usage indicated in this hardware manual (particularly in respect to the pin header row connectors, power connector and serial interface to a host-PC).

Implementation of PHYTEC products into target devices, as well as user modifications and extensions of PHYTEC products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

Product Change Management and information in this manual on parts populated on the SOM / SBC

With the purchase of a PHYTEC SOM / SBC, you will, in addition to our HW and SW offerings, receive free obsolescence maintenance service for the HW we provide.

Our PCM (Product Change Management) Team of developers is continuously processing all incoming PCN's (Product Change Notifications) from vendors and distributors concerning parts which are used in our products.

Possible impacts to the functionality of our products, due to changes of functionality or obsolesce of a certain part, are constantly being evaluated in order to take the right measures when purchasing or within our HW/SW design.

Our general philosophy here is: We never discontinue a product as long as there is demand for it.

Therefore, we have established a set of methods to fulfill our philosophy:

Avoiding strategies

- Avoid changes by evaluating longevity of parts during design phase.
- Ensure availability of equivalent second source parts.
- Stay in close contact with part vendors to be aware of roadmap strategies.

Change management in case of functional changes

- Avoid impacts on product functionality by choosing equivalent replacement parts.
- Avoid impacts on product functionality by compensating changes through HW redesign or backward compatible SW maintenance.
- Provide early change notifications concerning functional relevant changes of our products.

Change management in the rare event of an obsolete and non replaceable part

- Ensure long term availability by stocking parts through last time buy management according to product forecasts.
- Offer long term frame contract to customers.

Therefore, we refrain from providing detailed part specific information within this manual, which can be subject to continuous changes due to part maintenance for our products.

In order to receive reliable, up to date and detailed information concerning parts used for our product, please contact our support team through the contact information given within this manual.

1 Introduction

The phyCORE-AM335x belongs to PHYTEC's phyCORE System on Module family. The phyCORE SOM represent the continuous development of PHYTEC System on Module technology. Like its mini, micro and nanoMODUL predecessors, the phyCORE boards integrate all core elements of a microcontroller system on a subminiature board and are designed in a manner that ensures their easy expansion and embedding in peripheral hardware developments.

Independent research indicates that approximately 70% of all EMI (Electro Magnetic Interference) problems stem from insufficient supply voltage grounding of electronic components in high frequency environments. The phyCORE board design features an increased pin package, which allows approximately 20% of all connector pins on the phyCORE boards to be dedicated as ground. This improves EMI and EMC characteristics and makes it easier to design complex applications meeting EMI and EMC guidelines using phyCORE boards even in high noise environments.

phyCORE boards achieve their small size through modern SMD technology and multi-layer design. In accordance with the complexity of the module, 0402-packaged SMD components and laser-drilled microvias are used on the boards, providing phyCORE users with access to this cutting edge miniaturization technology for integration into their own design.

The phyCORE-AM335x is a subminiature (44 mm x 50 mm) insert-ready System on Module populated with the Texas Instruments AM335x microcontroller. Its universal design enables the phyCORE-AM335x's insertion in a wide range of embedded applications. All controller signals and ports extend from the controller to high-density pitch (0.5 mm) connectors aligning two sides of the board, allowing it to be plugged like a "big chip" into a target application.

Precise specifications for the controller populating the board can be found in the applicable controller Technical Reference Manual or datasheet. The descriptions in this manual are based on the Texas Instruments AM335x. No description of compatible microcontroller derivative functions is included, as such functions are not relevant for the basic functioning of the phyCORE-AM335x.

1.1 Features of the phyCORE-AM335x

The phyCORE-AM335x supports the following features :

- Insert-ready, sub-miniature (44 mm x 50 mm) System on Module (SOM) subassembly in low EMI design, achieved through advanced SMD technology
- Populated with the Texas Instruments AM335x microcontroller (ZCZ 324-pin PBGA package)
- Max 1GHz core clock frequency
- Boot from either NAND Flash or SPI Flash
- Controller signals and ports extend to two high-density (0.5 mm) Samtec connectors aligning two sides of the board, enabling it to be plugged into target application like a "big chip"
- Single supply voltage of 5 V (max. 600 mA) with on-board power management
- All controller required supplies generated on board
- Improved interference safety achieved through multi-layer PCB technology and dedicated ground pins
- General Purpose Memory Controller Bus (GPMC): flexible 8/16-bit asynchronous memory interface with up to 7 chip-select signals.
- 128 MB (up to 512 MB) on-board NAND Flash²
- 8 MB (up to 32 MB) on-board SPI Flash²
- 256 MB (up to 1 GB) DDR3 SDRAM²
- 4 kB (up to 32 kB) I2C EEPROM²
- One serial interface (TTL)
- Two High-Speed USB OTG interfaces
- One 10/100 MBit Ethernet interface providing 2 options:
 - Ethernet transceiver on the phyCORE-AM335x allowing for direct connection to an existing Ethernet network
 - Without on-board transceiver and provision of the RMII signals at TTL-level at the phyCORE-Connector instead³
- One 10/100/1000 RGMII Ethernet interface. The TTL-level interface is available at the optional phyCORE connector
- One I²C interface
- One SPI interface
- Up to two CAN interfaces
- LCD Interface Display Driver with an integrated touch interface and up to 24 data bits
- Up to two multichannel audio serial interfaces (McASP)
- Support of standard 20-pin debug interface through JTAG connector³
- One SD/MMC card interface
- On-board Power Management IC with integrated RTC

^{2:} The maximum memory size listed is as of the printing of this manual. Please contact PHYTEC for more information about new or additional module configurations available.

^{3:} Please refer to the order options described in the *Preface* or contact PHYTEC for more information about additional module configurations.

• Real-Time Clock

Caution!

Samtec connectors guarantee optimal connection and proper insertion of the phyCORE-AM335x. Please make sure that the phyCORE-AM335x is fully plugged into the matting connectors of the carrier board. Otherwise, individual signals may have bad or no contact.

1.2 Block Diagram

Figure 1: Block Diagram of the phyCORE-AM335x

1.3 Component Placement Diagram

Figure 2: phyCORE-AM335x Component Placement (top)

Introduction

Figure 3: phyCORE-AM335x Component Placement (bottom)

1.4 Minimum Requirements to Operate the phyCORE-AM335x

Basic operation of the phyCORE-AM335x requires only a supply of a +5.0 V input voltage with a minimum 2.0 A capacity and the corresponding GND connections.

These supply pins are located at the phyCORE-Connector X3:

VCC_5V0: -> Connector: X3 -> Pins: 1B, 2B, 3B, 5B

Connect all 5 V input pins to your power supply and at least the matching number of GND pins. Corresponding

GND: -> Connector: X3 -> Pins: 1A, 4A, 8A, 4B, 7B

Please refer to *Section 3* for information on additional GND pins located at the phyCORE-Connector X3.

Caution!

We recommend connecting all available 5 V input pins to the power supply system on a custom carrier board housing the phyCORE-AM335x and at least the matching number of GND pins neighboring the 5 V pins.

In addition, proper implementation of the phyCORE-AM335x module into a target application also requires connecting all GND pins neighboring signals that are being used in the application circuitry. Please refer to *Section 4* for more information.

2 Pin Description

All controller signals extend to surface mount technology (SMT) connectors (0.5 mm), lining two sides of the module (referred to as the phyCORE-Connector). This allows the phyCORE-AM335x to be plugged into any target application like a "big chip".

The numbering scheme for the phyCORE-Connector is based on a two dimensional matrix in which column positions are identified by a letter and row position by a number. Pin A1, for example, is located in the upper left hand corner of the matrix looking down from the top of the SOM. The pin numbering values increase moving down on the board. Lettering of the pin connector rows progress alphabetically from left to right for each connector (refer to Figure 4).

The numbered matrix can be aligned with the phyCORE-AM335x (viewed from above; phyCORE-Connector pointing down) or with the socket of the corresponding phyCORE Carrier Board/user target circuitry. The upper left-hand corner of the numbered matrix (pin 1A) is thus covered with the corner of the phyCORE-AM335x (marked with a triangle). The numbering scheme is always in relation to the PCB as viewed from above, even if all connector contacts extend to the bottom of the module.

The numbering scheme is consistent for both the module's phyCORE-Connector as well as the mating connector on the phyCORE-AM335x Carrier Board or target hardware, thereby considerably reducing the risk of pin identification errors.

Since the pins are exactly defined according to the numbered matrix previously described, the phyCORE-Connector is usually assigned a single designator for its position (X1, for example). In this manner. the phyCORE-Connector comprises a single, logical unit regardless of the fact that it could consist of more than one physically socketed connector.

Figure 4 illustrates the numbered matrix system. It shows the phyCORE-AM335x with SMT phyCORE-Connectors on its underside (defined with dotted lines) mounted on a carrier board. In order to facilitate understanding of the pin assignment scheme, the diagram presents a cross-view of the phyCORE-module showing these phyCORE-Connectors mounted on the underside of the module's PCB.

Figure 4: Pinout of the phyCORE Connector (top view with cross section insert)

Table 3 provides an overview of the pinout of the phyCORE-Connector with signal names and descriptions specific to the phyCORE-AM335x. It also provides the appropriate signal level interface voltages listed in the Signal Level column and the signal direction.

Caution!

Most of the controller pins have multiple multiplexed functions. Because most of these pins are connected directly to the phyCORE-Connector, the functions are also available there. Signal names and descriptions in *Table 3*, however, are in regard to the specification of the phyCORE-AM335x and the functions defined therein. Please refer to the AM335x datasheet or schematic to get to know about alternative functions. In order to utilize a specific pin's alternative function, the corresponding registers must be configured within the appropriate driver of the BSP. To support all features of the phyCORE-AM335x Carrier Board, a few changes have been made in the BSP delivered with the module.

Table 33 lists all pins with functions different from what is described in Table 3.

The Texas Instruments AM335x is a multi-voltage operated microcontroller. This means special attention should be paid to the interface voltage levels to avoid unintentional damage to the microcontroller and other on-board components. Refer to the Texas Instruments AM335x Reference Manual for details on the functions and features of controller signals and port pins.

Note:

Signal Level is the applicable logic level to interface a given pin.

Pin #	Signal	Туре	Signal Level	Description
X3A1	GND	-	-	Ground O V
X3A2	VBAT_IN_4RTC	PWR	3 V - 5 V	Optional, always-on power for the Real-Time Clock (RTC). If a backup batter is not used, connect this pin to the primary 5V supply.
X3A3	VDIG1_1P8V	REF	1.8 V	1.8 V reference voltage out
X3A4	GND	-	-	Ground 0 V
X3A5	X_AM335_NMIn	IPU	3.3 V	Non-maskable interrupt to the AM335x processor
X3A6	X_ETH1_RXn	I0	3.3 V	Ethernet PHY data minus
X3A7	X_ETH1_RXp	I0	3.3 V	Ethernet PHY data plus
X3A8	GND	-	-	Ground O V
X3A9	X_ETH1_TXn	I0	3.3 V	Ethernet PHY data minus
X3A10	X_ETH1_TXp	I0	3.3 V	Ethernet PHY data plus
X3A11	X_PB_RESETn	IN	3.3 V	Push-button reset
X3A12	GND	-	-	Ground 0 V
X3A13	X_ETH_LED2 / INTSELn	10	3.3 V	Ethernet configuration input and speed LED control output. For Ethernet configuration, this signal should be pulled HIGH until system reset is deasserted.
X3A14	X_ETH_LED1 / REGOFF	10	3.3 V	Ethernet configuration input and activity LED control output. For Ethernet configuration, this signal should be pulled LOW until system reset is deasserted.
X3A15	X_SPI0_SCLK	OUT	3.3 V	Serial Peripheral Interface 0 clock.
X3A16	GND	-	-	Ground 0 V
X3A17	X_SPI0_CS0	OUT	3.3 V	Serial Peripheral Interface 0 chip select 0. This signal is not externally available in the default SOM configuration as it connects to SPI Flash.
X3A18	X_SPIO_CS1 / MMCO_SDCD	10	3.3 V	Serial Peripheral Interface 0 chip select 1 or MMC/SD0 Card Detect
X3A19	X_I2C0_SCL	IO	3.3 V	I ² C bus 0 clock. Some I2CO addresses are reserved. See <i>Section 8.1.5</i>
X3A20	X_I2CO_SDA	10	3.3 V	I²C bus 0 data.
X3A21	GND	-	-	Ground O V
X3A22	X_MCASPO_AXRO	I0	3.3 V	Multi-channel Audio Serial Port 0 data 0
X3A23	X_GPI0_3_17	I0	3.3 V	AM335x GPIO3_17
X3A24	X_MII1_TXD2	IN	3.3 V	Ethernet 1 MII transmit data
X3A25	X_MII1_TXD3	OUT	3.3 V	Ethernet 1 MII transmit data
X3A26	GND	-	-	Ground 0 V
X3A27	X_MCASPO_AHCLKX	I0	3.3 V	Multi-channel Audio Serial Port 0 Tx bit clock
X3A28	X_MCASPO_AXR1	I0	3.3 V	Multi-channel Audio Serial Port 0 data 1
X3A29	X_MCASPO_FSX	I0	3.3 V	Multi-channel Audio Serial Port 0 Tx frame sync
X3A30	X_PORZ	OUT	3.3 V	Power-on reset (low-true)
X3A31	GND	-	-	Ground 0 V
X3A32	X_UARTO_TXD	OUT	3.3 V	UARTO Tx data from AM335x
X3A33	X_UARTO_RXD	IN	3.3 V	UARTO Rx data to AM335x
X3A34	X_SPIO_DO	IN	3.3 V	Serial Peripheral Interface 0 Master-In-Slave- Out (MISO) data
X3A35	X_SPI0_D1	OUT	3.3 V	Serial Peripheral Interface 0 Master-Out-Slave- In (MOSI) data

Table 3:Pinout of the phyCORE Connector X3, Row A

Pin #	Signal	Туре	Signal Level	Description
X3A36	GND	-	-	Ground 0 V
X3A37	X_LCD_D3 / P_MII0_TXD2	I0	3.3 V	LCD data 3 or PRU Ethernet 0 Tx data 2
X3A38	X_LCD_D2 / P_MIIO_TXD3	IO	3.3 V	LCD data 2 or PRU Ethernet 0 Tx data 3
X3A39	X_LCD_D4 / P_MIIO_TXD1	IO	3.3 V	LCD data 4 or PRU Ethernet 0 Tx data 1
X3A40	X_LCD_D5 / P_MIIO_TXDO	IO	3.3 V	LCD data 5 or PRU Ethernet 0 Tx data 0
X3A41	GND	-	-	Ground 0 V
X3A42	X_LCD_D0 / P_MII0_MT_CLK	I0	3.3 V	LCD data 0 or PRU Ethernet 0 Tx clock
X3A43	X_LCD_D1 / P_MIIO_TXEN	OUT	3.3 V	LCD data 1 or PRU Ethernet 0 Tx enable
X3A44	X_LCD_D13 / P_MIIO_RXER	10	3.3 V	LCD data 13 or PRU Ethernet 0 Rx error
X3A45	X_LCD_HSYNC	OUT	3.3 V	LCD horizontal sync
X3A46	GND	-	-	Ground 0 V
X3A47	X_USBO_DM	DIFF100	3.3 V	USB 0 data minus
X3A48	X_USB0_DP	DIFF100	3.3 V	USB 0 data plus
X3A49	X_LCD_D12/P_MII0_RXLINK	10	3.3 V	LCD data 12 or PRU Ethernet 0 Rx link
X3A50	X_LCD_BIAS_EN/P_MII1_CRS	10	3.3 V	LCD AC bias enable or PRU Ethernet 1 carrier sense
X3A51	GND	-	-	Ground 0 V
X3A52	X_LCD_D8 / P_MII0_RXD3	10	3.3 V	LCD data 8 or PRU Ethernet 0 Rx data 3
X3A53	X_LCD_D14/P_MII0_MR_CLK	10	3.3 V	LCD data 14 or PRU Ethernet 0 Rx clock
X3A54	X_LCD_D15 / P_MIIO_RXDV	10	3.3 V	LCD data 15 or PRU Ethernet Rx data valid
X3A55	X_LCD_D6	OUT	3.3 V	LCD data
X3A56	GND	-	-	Ground 0 V
X3A57	X_LCD_D7	OUT	3.3 V	LCD data
X3A58	X_LCD_D9 / P_MIIO_RXD2	IO	3.3 V	LCD data 9 or PRU Ethernet 0 Rx data 2
X3A59	X_LCD_D10 / P_MII0_RXD1	I0	3.3 V	LCD data 10 or PRU Ethernet 0 Rx data 1
X3A60	X_UART2_RX	IN	3.3 V	UART 2 RX data to AM335x

Table 3:Pinout of the phyCORE Connector X3, Row A (cont.)

Pin #	Signal	Туре	Signal Level	Description
X3B1	VDD_5V_IN	PWR	5.0 V	3.6 V - 5 V power input
X3B2	VDD_5V_IN	PWR	5.0 V	3.6 V - 5 V power input
X3B3	VDD_5V_IN	PWR	5.0 V	3.6 V - 5 V power input
X3B4	GND	-	-	Ground 0 V
X3B5	VDD_5V_IN	PWR	5.0 V	3.6 V - 5 V power input
X3B6	VAUX2_3P3V	REF	3.3 V	3.3 V reference Voltage
X3B7	GND	-	-	Ground 0 V
X3B8	X_UART1_CTS	IN	3.3 V	UART1 clear to send
X3B9	X_UART1_RTS	OUT	3.3 V	UART1 ready to send
X3B10	X_UART1_TX / P_UART0_TX	OUT	3.3 V	UART 1 Tx data or PRU UARTO Tx data
X3B11	X_UART1_RX / P_UART0_RX	IN	3.3 V	UART 1 Rx data or PRU UARTO Rx data
X3B12	GND	-	-	Ground 0 V
X3B13	X_RESET_OUTn	OUT	3.3 V	Reset output
X3B14	X_PB_POWER	IN	5.0 V	Push-button power control. Behavior is configurable. See <i>Section 4.3.3</i>
X3B15	GPI0_3_19	I0	3.3 V	AM335x GPI0_3_19
X3B16	X_MCASPO_ACLKX	I0	3.3 V	Multi-channel Audio Serial Port 0 Tx bit clock
X3B17	GND	-	-	Ground 0 V
X3B18	X_USB1_DP	DIFF100	3.3 V	USB 1 data plus
X3B19	X_USB1_DM	DIFF100	3.3 V	USB 1 data minus
X3B20	GND	-	-	Ground 0 V
X3B21	X_USB1_DRVVBUS	OUT	3.3 V	USB 1 VBUS control output
X3B22	X_USB1_VBUS	USB	5.0 V	USB 1 bus voltage
X3B23	X USB1 ID	IN	1.8 V	USB 1 port identification. 1.8 V logic.
X3B24	X USB1 CE	OUT	3.3 V	USB 1 port charger enable
X3B25	GND	-	-	Ground 0 V
X3B26	X_ECAPO_IN_PWM0_OUT	I0	3.3 V	Enhanced Capture 0 input or Auxiliary Pulse-Width
X3B27	GNDA ADC	_	-	Analog Ground O V
X3B28		analog	1 8 V	AM335x analog input 7
X3B20	X_AIN6	analog	1.0 V	AM335x analog input 6
X3B30	GNDA ADC	-	-	Analog Ground O V
X3B31	X AIN5	analog	18V	AM335x analog input 5
X3B32	X AIN4	analog	1.8 V	AM335x analog input 4
X3B33	GNDA ADC	-	-	Analog Ground 0 V
X3B34	X AIN2	analog	1.8 V	AM335x analog input 2 / Touch Y+
X3B35	X AIN3	analog	1.8 V	AM335x analog input 3 / Touch Y-
X3B36	GNDA ADC	-	-	Analog Ground O V
X3B37	X AIN1	analog	1.8 V	AM335x analog input 1 / Touch X-
X3B38	X AINO	analog	1.8 V	AM335x analog input 0 / Touch X+
X3B39	X AM335 EXT WAKEUP	IN	1.8 V	AM335x processor external wakeup
X3B40	GND	-	-	Ground 0 V
X3B41	X_USB0_VBUS	IN	5.0 V	USB 0 bus voltage
X3B42	X_USBO_DRVVBUS	OUT	3.3 V	USB 0 VBUS control output
X3B43	X_USBO_ID	IN	1.8 V	USB 0 port identification. 1.8 V logic
X3B44	X_USB0_CE	OUT	3.3 V	USB 0 charger enable
X3B45	GND	-	-	Ground 0 V
X3B46	X_LCD_PCLK / P_MIIO_CRS	IO	3.3 V	LCD pixel clock or PRU Ethernet 0 carrier sense

Table 4:Pinout of the phyCORE Connector X3, Row B

Pin #	Signal	Туре	Signal Level	Description
X3B47	X_LCD_VSYNC	OUT	3.3 V	LCD vertical sync
X3B48	GND	-	-	Ground 0 V
X3B49	X_LCD_D11 / P_MIIO_RXD0	IO	3.3 V	LCD data 11 or PRU Ethernet 0 Rx data 0
X3B50	X_GPIO_1_9	IO	3.3 V	AM335x GPI0_1_9
X3B51	X_GPIO_1_8	IO	3.3 V	AM335x GPI0_1_8
X3B52	GND	-	-	Ground 0 V
X3B53	X_MMCO_CLK	I0	3.3 V	MMC / SDIO 0 clock
X3B54	X_MMCO_CMD	I0	3.3 V	MMC / SDIO 0 command
X3B55	X_MMCO_DO	I0	3.3 V	MMC / SDIO 0 data 0
X3B56	X_MMCO_D1	I0	3.3 V	MMC / SDIO 0 data 1
X3B57	GND	-	-	Ground 0 V
X3B58	X_MMCO_D2	I0	3.3 V	MMC / SDIO 0 data 2
X3B59	X_MMCO_D3	I0	3.3 V	MMC / SDIO 0 data 3
X3B60	X_UART2_TX	OUT	3.3 V	UART 2 Tx data to Carrier Board

Table 4:Pinout of the phyCORE Connector X3, Row B

Note:

Functional blocks are color coded for easy identification.

Pin #	Signal	Туре	Signal Level	Description
X1A1	X_GMII_RXER / MCASP1_FSX	10	3.3 V	Ethernet1 GMII Rx error or Multi-channel Audio Serial Port1 Tx frame sync
X1A2	GND	-	-	Ground 0 V
X1A3	X_GMII1_RXD0 / GPI0_2_21	I0	3.3 V	Ethernet1 GMII Rx data 0 or AM335x GPI0_2_21
X1A4	X_GMII1_RXD1 / GPI0_2_20	I0	3.3 V	Ethernet1 GMII Rx data 1 or AM335x GPI0_2_20
X1A5	X_GMII_TXD2	I0	3.3 V	Ethernet1 GMII Tx data 2
X1A6	X_GMII_TXD3	I0	3.3 V	Ethernet1 GMII Tx data 3
X1A7	GND	-	-	Ground 0 V
X1A8	X GMII1 RXD3/X UART3 RX	IN	3.3 V	Ethernet1 GMII Rx data 3 or UART3 Rx data
X1A9	X GMII1 RXD3/X UART3 TX	0UT	3.3 V	Ethernet1 GMII Rx data 2 or UART3 Tx data
X1A10	X_GMII1_TXEN / MCASP1 AXR0	IO	3.3 V	Ethernet1 GMII Tx enable or Multi-channel Audio Serial Port 1 data 0
X1A11	X GMII1 TXD0/GPI0 0 28	IO	3.3 V	Ethernet1 GMII Tx data 0 or AM335x GPIO 0 28
X1A12	GND	-	-	Ground 0 V
X1A13	X_GMII1_TXD1/GPI0_0_21	IO	3.3 V	Ethernet1 GMII Tx data 1 or AM335x GPIO_0_21
X1A14	X_GMII1_COL / MCASP1_AXR2	IO	3.3 V	Ethernet1 GMII collision detect or Multi- channel Audio Serial Port 1 data 2
X1A15	X_GMII1_CRS / MCASP1_ACLKX	IO	3.3 V	Ethernet1 GMII carrier sense or Multi- channel Audio Serial Port 1 Tx bit clock
X1A16	X_GPMC_AD1	10	3.3 V	General Purpose Memory Controller interface Address / Data
X1A17	GND	-	-	Ground 0 V
X1A18	RMII1_REFCLK / GPI0_0_29	IO	3.3 V	Ethernet1 RMII reference clock
X1A19	X_GMII1_RCLK/	IO	3.3 V	Ethernet1 GMII receive clock
X1A20	X_GMII1_TCLK/	IO	3.3 V	Ethernet1 GMII transmit clock
X1A21	-	-	-	Reserved, no-connect
X1A22	GND	-	-	Ground 0 V
X1A23	X_GPMC_ADO	10	3.3 V	General Purpose Memory Controller interface Address/Data
X1A24	X_GPMC_AD2	10	3.3 V	General Purpose Memory Controller Interface Address/Data
X1A25		10	3.3 V	General Purpose Memory Controller Interface Address/Data
X1A20		10	3.3 V	General Purpose Memory Controller Interface Address/Data
X1A2/ V1A20		- TO	- 2 2 V	Ground O V
X1A20		10 TO	3.3 V	General Purpose Memory Controller Interface Address/Data
X1A29		10 TO	3.3 V 3 3 V	General Purpose Memory Controller Interface Address/Data
X1A31	-	-	-	Reserved no-connect
X1A32	GND	-	-	Ground 0 V
X1A33	X_GPMC_ADVn_ALE	OUT	3.3 V	General Purpose Memory Controller interface address valid / address latch enable
X1A34	X_GPMC_BEOn_CLE	0UT	3.3 V	General Purpose Memory Controller interface byte enable 0/command latch enable
X1A35	X_RGMII2_RCTL / MMC2_DATO / P_MII1_TXD3	IO	3.3 V	Ethernet 2 RGMII Rx control or MMC/ SDIO 2 data 2 or PRU Ethernet1 Tx data 3
X1A36	X_RGMII2_TD3 / MMC2_DAT1 / P_MII1_TXD2	I0	3.3 V	Ethernet 2 RGMII Tx data 3 or MMC/SDIO 2 data 1 or PRU Ethernet1 Tx data 2
X1A37	GND	-	-	Ground 0 V

Table 5:Pinout of the optional phyCORE Connector X1, Row A

Pin #	Signal	Туре	Signal Level	Description
X1A38	X_RMII2_CRS_DV	IO	3.3 V	Ethernet 2 RMII CRS/DV signal. This signal can replace the NAND Ready/Busy signal to AM335x pin T17. See <i>Section 8.1.3.2</i>
X1A39	X_RGMII2_TD2 / MMC2_DAT2 / P_MII1_TXD1	IO	3.3 V	Ethernet 2 RGMII Tx data 2 or MMC/SDIO 2 data 2 or PRU Ethernet1 Tx data 1
X1A40	X_RGMII2_TD0 / P_MII1_RXD3	IO	3.3 V	Ethernet 2 RGMII Tx data 0 or PRU Ethernet1 Rx data 3
X1A41	X_RGMII2_TCLK / MMC2_DAT4 / P_MII1_RXD2	10	3.3 V	Ethernet 2 RGMII transmit clock or MMC2 data 4 or PRU Ethernet1 Rx data 2
X1A42	GND	I	-	Ground 0 V
X1A43	X_RGMII2_RCLK / MMC2_DAT5 / P_MII1_RXD1	10	3.3 V	Ethernet 2 RGMII Rx clock or MMC/ SDIO 2 data 5 or PRU Ethernet1 Rx data 1
X1A44	X_RGMII2_RD2 / MMC2_DAT7 / P_MII1_MR1_CLK	10	3.3 V	Ethernet 2 RGMII Rx data 2 or MMC/ SDIO 2 data 7 or PRU Ethernet1 Rx clock
X1A45	X_RGMII2_RD1 / P_MII1_RXDV	10	3.3 V	Ethernet 2 RGMII Rx data 1 or PRU Ethernet1 Rx data valid
X1A46	X_RGMII2_RD0 / P_MII1_RXER	10	3.3 V	Ethernet 2 RGMII Rx data 0 or PRU Ethernet1 Rx error
X1A47	GND	-	-	Ground 0 V
X1A48	X_MMC2_CLK / P_MDIO_MDCLK	10	3.3 V	MMC/SDIO 2 clock or PRU Ethernet1 MDIO clock
X1A49	-	-	-	Reserved, no-connect
X1A50	-	-	-	Reserved, no-connect

 Table 5:
 Pinout of the optional phyCORE Connector X1, Row A (cont.)

Note:

Functional blocks are color coded for easy identification.

Pin #	Signal	Туре	Signal Level	Description
X1B1	X_SPI_WPn	IPU	3.3 V	SPI FLASH write-protect (low-true)
X1B2	X_MDIO_DATA	I0	3.3 V	Ethernet MDIO interface data
X1B3	X_MDIO_CLK	0UT	3.3 V	Ethernet MDIO interface clock
X1B4	GND	-	-	Ground 0 V
X1B5	X_GPI0_3_18	I0	3.3 V	AM335x GPIO_3_18
X1B6	X_MII1_RCTL / GPI0_3_4	I0	3.3 V	Ethernet MII1 Rx control or AM335x GPI0_3_4
X1B7	X_TDI	IN	3.3 V	JTAG data in
X1B8	X_TCK	IN	3.3 V	JTAG clock
X1B9	GND	-	-	Ground 0 V
X1B10	X_TDO	0UT	3.3 V	JTAG data out
X1B11	X_TRSTn	IN	3.3 V	JTAG reset (low-true)
X1B12	X_TMS	IN	3.3 V	JTAG mode select
X1B13	-	-	-	Reserved, no-connect
X1B14	GND	-	-	Ground 0 V
X1B15	X_INTR1	IPU	3.3 V	AM335x Interrupt 1
X1B16	X_INT_RTCn	OUT	3.0 V	External RTC interrupt (low-true)
X1B17	X_GPMC_WEn	OUT	3.3 V	General Purpose Memory Controller write enable
X1B18	X_GPIO_3_8	I0	3.3 V	AM335x GPIO_3_8/EMU1 ⁴ (ICEPick configuration)
X1B19	GND	-	-	Ground 0 V
X1B20	X_GPIO_3_7	I0	3.3 V	AM335x GPI0_3_7/EMU1 ⁴ (ICEPick configuration)
X1B21	X_GPMC_CSOn	0UT	3.3 V	General Purpose Memory Controller write enable
X1B22	X_GPMC_OEN_REn	OUT	3.3 V	General Purpose Memory Controller output enable / read enable
X1B23	X_GPMC_WAIT / P_MIIO_COL	10	3.3 V	General Purpose Memory Controller WAIT / PRU Ethernet0 collision
X1B24	GND	-	-	Ground 0 V
X1B25	X_PMIC_POWER_EN	IN	5V_PU	PMIC power enable.
X1B26	X_LCD_D21	0UT	3.3 V	LCD data
X1B27	X_LCD_D23	0UT	3.3 V	LCD data
X1B28	X_LCD_D22 / P_MIIO_COL	I0	3.3 V	LCD data / PRU Ethernet0 collision detect
X1B29	GND	-	-	Ground 0 V
X1B30	X_LCD_D20	0UT	3.3 V	LCD data
X1B31	X_LCD_D19	OUT	3.3 V	LCD data
X1B32	X_LCD_D18	OUT	3.3 V	LCD data
X1B33	X_P_MII1_TXEN	OUT	3.3 V	PRU Ethernet 1 MII Tx enable
X1B34	GND	-	-	Ground 0 V
X1B35	X_GPIO_CKSYNC	IO	3.3 V	PMIC clock-sync input or PMIC General-Purpose-Input- Output
X1B36	LCD_D16	OUT	3.3 V	LCD data
X1B37	X_RGMII2_INT / MMC2_DAT3 / P_MII1_RXLINK	I0	3.3 V	Ethernet 2 Rx data 3 or MMC/SDIO 2 data 6 or PRU Ethernet 1 Rx data 0

Table 6:Pinout of the optional phyCORE Connector X1, Row B

^{4:} If WIR mode is not used, decouple pin before POR (Power on Reset) is released. For more information , see the AM335x Technical Manual (Chapter 27.1.2.2.2)

Pin #	Signal	Туре	Signal Level	Description
X1B38	X_LCD_D17	OUT	3.3 V	LCD data
X1B39	GND	-	-	Ground 0 V
X1B40	X_RGMII2_RD3 / MMC2_DAT6 / P_MII1_RXD0	IO	3.3 V	Ethernet2 Rx data 3 or MMC/SDIO2 data 6 or PRU Ethernet1 Rx data 0
X1B41	X_RGMII2_TD1/ P_MMI1_TXD0	IO	3.3 V	Ethernet2 Tx data 1 or PRU Ethernet1 Tx data 0
X1B42	X_RGMII2_TCTL / P_MII1_MT_CLK	IO	3.3 V	Ethernet2 Tx control or PRU Ethernet1 Tx clock
X1B43	-	-	-	Reserved, no-connect
X1B44	GND	-	-	Ground 0 V
X1B45	X_CLKOUT1	OUT	3.3 V	AM335x CLKOUT1, 25 MHz
X1B46	X_MMC2_CMD / P_MDIO_DATA	10	3.3 V	MMC/SDIO2 command or PRU MDIO data
X1B47	X_GPI0_1_30	I0	3.3 V	AM335x GPIO_1_30
X1B48	X_GPI0_1_31	IO	3.3 V	AM335x GPIO_1_31. Selects which signal routes to AM335x pin T17. 0 = X_RMII2_CRS_DV. 1 = NAND Ready/Busy
X1B49	GND	-	-	Ground 0 V
X1B50	-	-	-	Reserved, no-connect

 Table 6:
 Pinout of the optional phyCORE Connector X1, Row B (cont.)

Note:

Functional blocks are color coded for easy identification.

Caution!

Ensure that all module connections do not exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller manuals/data sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading through connected peripherals.
3 Jumpers

For configuration purposes, the phyCORE-AM335x has ten solder jumpers. These have been installed prior to delivery.

Figure 5 depicts the jumper pad numbering scheme for reference when altering jumper settings on the board. The beveled edge in the silkscreen around the jumper indicates the location of pin 1. Figure 6 indicates the location of the solder jumpers on the board with pin 1 shown in green.

Table 7 below provides a functional summary of the solder jumpers which can be changed to adapt the phyCORE-AM335x to your needs. It shows their default positions, and possible alternative positions and functions. A detailed description of each solder jumper can be found in the applicable section listed in the table.

phyCORE AM335x [PCM-051]

SOM Jumper Locations (top) Figure 6:

If manual jumper modification is required, ensure that the board as well as surrounding components and sockets remain undamaged while de-soldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. If soldered jumpers need to be removed, the use of a desoldering pump, desoldering braid, an infrared desoldering station, desoldering tweezers, hot air rework station or other desoldering method is strongly recommended. Follow the instructions carefully for whatever method of removal is used.

Please pay special attention to the "TYPE" column to ensure you are using the correct type of jumper (0 0hm, 10 k0hms, etc.). The jumpers are either 0805 package or 0402 package with a 1/8 W or better power rating.

Jumper	Setting	Description		Chapter	
J1		J1 routes CLKOUT1 to either the phyCORE-Connector or to the Ethernet1 transceiver's clock input. CLKOUT1 can be used for the Ethernet reference clock if the Ethernet1 interface is running in MIL mode. Use 11 together with			
		J5 to select the clock for the Ethernet1 interface.	OR (0805)	Table 24	
	1+2	CLKOUT1 connects to the phyCORE for use on the Carrier Board.			
	2+3	CLKOUT1 connects to the Ethernet1 transceiver's clock input. Make sure jumper J5 is set to (1+2) and XT3 is not populated.			
J2	2 J2 connects the low-true write-protect input of the NAND-Flash (U10) to either the power-on reset signal or to GND. On many NAND memory devices this pin enables or disables the activation of the lock function. There is no guarantee that the standard NAND memory populating the phyCORE-AM335x will have this lock function. Please refer to the corresponding NAND memory data sheet for more detailed			6.2	
		information.			
	1+2	The NAND is locked.			
12	2+3	12 accorts the low true HOLD input of the SPI Elash (US). The			
55		HOLD function disables the SPI Flash.		C D D	
1+2		The SPI Flash is disabled, in HOLD.			
	2+3	The SPI Flash works normally.			
J4		 J4 connects the low-true write-protect input of the SPI-Flash (U5) to one of three signals: 1. The power-on reset signal, X_PORZ. This prevents data 			
		 Corruption during power-up. GND. This write-protects the Flash. The SPI write-protect signal from the Carrier Board, X_SPI_WPn. 	0R (0805)	6.2.3	
		Please refer to the corresponding memory data sheet for more information about using the write-protect function.			
	1+2	The SPI Flash's write-protect input is controlled with the SPI Flash write-protect signal from the Carrier Board, X_SPI_WPn.			
	2+3	The SPI Flash is write-protected.			
	2+4	The SPI Flash is writable.			

Table 7:SOM Jumper Setting

Jumper	Setting	Description	Туре	Chapter
J5		 Jumper J5 is used together with jumper J1 to select the clock for the Ethernet1 transceiver. 1. To run RMII at 10M, the AM335x_RMII1_REFCLK signal can be used for the transceiver's clock input: J1 to (1+2) and J5 to (2+3). 2. To run RMII at 100M, populate a 50 MHz crystal at XT3 for the clock input. This is a SOM ordering option. Set jumpers J1 and J5 both to (1+2). 3. To run MII mode, set jumpers J1 and J5 so that CLKOUT1 routes to the transceiver's clock input: J1 to (2+3) and J5 to (1+2). 	OR (0402)	Table 24
	1+2	RMII1_REFCLK/GPI00_29 routes to the phyCORE-Connector. Use when the Ethernet1 interface is running in MII mode or in RMII mode at 100M.		
	2+3	RMII1_REFCLK routes to the transceiver clock input. Use when the Ethernet1 interface is running in RMII mode at 10M. Make sure jumper J1 is set to (1+2).		
J6		Selects the COL/CRS signal for the Ethernet1 transceiver depending on whether it is running in MII or RMII mode.		Table 24
	1+2	Selects the COL/CRS signal for RMII mode.	OR (0402)	
	2+3	Selects the COL/CRS signal for MII mode.		
J7, J8		J7 and J8 define the slave addresses (A1 and A2) of the serial memory I ² C EEPROM (U6) on the I2CO bus. In the high-nibble of the address, I ² C memory devices have the slave ID 0xA. The low- nibble is built from A2, A1, A0, and the R/W bit. A0 is set to low.		T // 45
	J7.1+2 J8.2+3	A1 = 1 A2 = 0	08 (0805)	Table 19
	other settings	Please refer to <i>Table 14</i> to find alternative addresses resulting from other combinations of jumpers J7 and J8.	-	
J9		J9 connects the write-protection input pin of the I ² C EEPROM (U6) to GND.		
		On many memory devices, this pin enables or disables the activation of a write protect function.	or disables the OR (0805)	
	closed	I ² C EERPROM is writable.]	
	open	I ² C EEPROM is write-protected.		

Table 7:SOM Jumper Setting (cont.)

Jumper	Setting	Description	Туре	Section
J10		J10 connects the PMICs VBACKUP pin to either the main system power, VDD_5V_IN, or to the backup battery power supply, VBAT_IN_4RTC.		
		When the PMIC's VBACKUP pin connects to the backup battery, the PMIC's RTC can run when the main system power is off and the PMIC can charge the backup battery when the main system power is on.	OR (0805)	4.3
	1+2	The backup battery does not connect to the PMIC.		
	2+3	The backup battery connects to the PMIC.		
J11		J11 is used to connect the Ethernet PHY with controller in MII mode. This mode is not used, because it needs more signal lines than RMII mode.		
		If the MII mode is set, the two interfaces UART2 and DCANO are not available.	OR (0805)	4.3
	1+2	X_UART2_TX is connected to the connector.		
	2+3	MII mode can be used, but UART2 is no longer available.		
J12		J12 is used to connect the Ethernet PHY with controller in MII		
		mode. This mode is not used, because it needs more signal lines than RMII mode.		
		If the MII mode is set, the two interfaces UART2 and DCANO are not available.	OR (0805)	4.3
	1+2	X_UART2_RX is connected to the connector.		
	2+3	MII mode can be used, but UART2 is no longer available.		
J13		J13 is used to connect the Ethernet PHY with controller in MII mode. This mode is not used, because it needs more signal lines than RMII mode.		
		If the MII mode is set, the two interfaces UART2 and DCANO are not available.	OR (0805)	4.3
	1+2	X_DCAN0_RX is connected to the connector.		
	2+3	MII mode can be used, but DCANO is no longer available.		
J14		J14 is used to connect the Ethernet PHY with controller in MII mode. This mode is not used, because it needs more signal lines than RMII mode.		
		If the MII mode is set, the two interfaces UART2 and DCANO are not available.	OR (0805)	4.3
	1+2	X_DCAN0_TX is connected to the connector.		
	2+3	MII mode can be used, but DCANO is no longer available.		

Table 7:SOM Jumper Setting (cont.)

4 Power

The phyCORE-AM335x operates off of a single 5.0 V system power supply. The following sections describe the power design of the phyCORE-AM335x.

4.1 Primary System Power (VDD_5V_IN)

The phyCORE-AM335x operates off of a primary voltage supply with a nominal value of +5.0 V. On-board switching regulators generate the 1.1 V, 1.5 V, 1.8 V, and 3.3 V voltage supplies required by the AM335x processor and on-board components from the primary 5.0 V supplied to the SOM.

For proper operation, the phyCORE-AM335x must be supplied with a voltage source of $5.0 \text{ V} \pm 5\%$ with at least A capacity at the VCC pins on the phyCORE-Connector X3.

VDD_5V_IN: -> X3 -> 1B, 2B, 3B, 5B

Connect all +5 V VCC input pins to your power supply and, at minimum, the matching number of GND pins.

Corresponding GND: -> X3 -> 1A, 4A, 8A, 4B, 7B

Please refer to *Section 2* for the location of additional GND pins located on the phyCORE-Connector X3.

Caution!

As a general design rule, we recommend connecting all GND pins neighboring signals which are being used in the application circuitry. For maximum EMI performance, all GND pins should be connected to a solid ground plane.

4.2 Backup Power (VBAT_IN_4RTC)

To backup the RTC on the module, a secondary voltage source of 3 V can be attached to the phyCORE-AM335x at pin X3A2. This voltage source supplies the backup voltage domain VBACKUP of the phyCORE-AM335x which supplies the RTC (either the RTC integrated in the PMIC or the external RTC) and some critical registers when the primary system power (VCC_5V_IN) is removed.

Applications not requiring a backup mode should connect the VBAT pin to the primary system power supply, VDD_5V_IN.

4.3 Power Management IC (U4)

The phyCORE-AM335x provides an on-board Power Management IC (PMIC), Texas Instruments TPS65910A3, at position U4 to source the different voltages required by the processor and on-board components. *Figure 7* presents a graphical depiction of the SOM powering scheme.

The PMIC supports many functions including an integrated RTC and different power management functions. It is connected to the AM335x via the I2CO interface. The I2CO addresses of the Power Management IC is 0x2D. The smart reflex address is 0x12 (7 MSB addressing).

Please refer to the Power Management IC's Datasheet and User Guide for further information.

4.3.1 Power Domains

The PMIC has two input voltage rails VDD_5V_IN and VBAT_IN_4RTC, as can be seen in *Figure 7*. VDD_5V_IN is supplied from the primary voltage input pins VDD_5V_IN of the phyCORE-AM335x. VBAT_IN_4RTC may optionally be supplied to the PMIC from the secondary voltage input pin X3.A3 through jumper J10.

Table 8 and *Table 9* summarize the relation between the different voltage rails and the devices on the phyCORE-AM335x.

External Voltage Name in	Description	Goes to
VDD_5V_IN	5 V main system power supply	U4 PMIC
VBAT_IN_4RTC	3 V optional backup battery supply	U4 PMIC. If jumper J10 is installed at (2+3), U11 power switch

Table 8:External Supply Voltages

PMIC Output	Name in Schematics	Voltage	Goes to	
VDD1	VDD1_1P1V	1.1 V	AM335x MPU	
VDD2	VDD_CORE_1P1V	1.1 V	AM335x Core	
VIO	VDDR_1P5V	1.5 V	AM335x SDRAM and SDRAM devices	
VDIG1	VDIG1_1P8V	1.8 V	phyCORE-Connector	
VDIG2	VDIG2_1P8V	1.8 V	AM335x PLLs and oscillator	
VAUX1	VAUX1_1P8V	1.8 V	AM335x USB	
VAUX2	VAUX2_3P3V	3.3 V	phyCORE-Connector and AM335x VDDSHV2, VDDSHV3, and VDDSHV4	
VAUX33	VAUX33_3P3V	3.3 V	AM335x USB	
VDAC	VDAC_1P8V	1.8 V	AM335x VDDS	
VPLL	VPLL_1P8V	1.8 V	AM335x Analog/Digital Converter (ADC)	
VMMC	VMMC_3P3V	3.3 V	AM335x VDDSHV1, VDDSHV5, VDDSHV6, and digital devices	
VRTC	VRTC_1P8V	1.8 V	PMIC BOOT1 pin	

Table 9:PMIC Generated Voltages

Figure 7: Power Supply Diagram

4.3.2 Real Time Clock (RTC)

The PMIC, which is populated on the module, provides a real time clock (RTC) with alarm and timekeeping functions. The RTC is supplied by the backup voltage, VBAT_IN_4RTC, when the main power supply VDD_5V_IN is not applied if jumper J10 is installed at (2+3).

The RTC stores the time (seconds / minutes / hours) and date (day / month / year / day of the week) information in binary-coded decimal code (BCD) up to year 2099. It can generate two programmable interrupts. The timer interrupt is a periodically generated interrupt (1 second / 1 minute / 1 hour / 1 day period), while the alarm interrupt can generate a precise time of the day to initiate a wake-up of the platform.⁵

^{5:} All special functions of the PMIC such as RTC interrupts, use of power groups, etc. require the PMIC to be programmed via I²C interface. At the time of delivery, only the generation of the required voltages is implemented. Please refer to the Power Management IC's User Guide for more information on how to program the PMIC.

4.3.3 Power Management

The PMIC provides different power management functions. Two signals to control the power-on/off state of the system (X_PB_POWER and X_PMIC_POWER_EN) are available.

Pin #	Signal name Connected to		Description		
X3B14	X_PB_POWER	phyCORE-Connector (X3)	External switch-on control (ON button). The PMIC's response to this signal can be configured in the PMIC registers. See the PMIC's User Guide for more information.		
X1B25	X_PMIC_POWER_EN	phyCORE-Connector (X1)	Switch-on/-off control signal. The PMIC's response to this signal can be configured in the PMIC registers. See the PMIC's User Guide for more information.		

Table 10 shows the power management signals and their functions.

Table 10:Power Management Signals

4.3.4 External Battery Charging

The Power Management IC is able to charge the VBACKUP battery when the main system power is on if jumper J10 is installed at pins (2+3). Enabling and configuring the battery charger is done through the PMIC's control registers. Refer to the PMIC's User Guide for detailed information.

4.3.5 Reference Voltages

The voltage level of the phyCORE logic circuitry is 3.3 V with a few exceptions. All of the signals with their interface voltages are listed in *Table 3*. In order to allow external devices to avoid driving interface signals into the SOM before it is powered, a reference voltage, VAUX2_3P3V, is brought out at pin X3B6 of the phyCORE-Connector. This voltage should be used to determine when the SOM voltages are on so signals can be driven to the SOM without damaging any devices.

Use of level shifters supplied with VAUX2_3P3V allows the signals to be converted according to the needs of the custom target hardware. Alternatively, signals can be connected to an open drain circuitry with a pull-up resistor attached to VAUX2_3P3V.

A second voltage supplied by the SOM is VDIG1_1P8V. VDIG1_1P8V is provided for customer use. The VDIG1_1P8V voltage is brought out at pin X3.A3.

Please take care not to load the reference voltages too heavily to avoid any disfunction or damage of the module. The following maximum loads are allowed:

- VDIG1_1P8V (1.8 V): 300 mA
- VAUX2_3P3V (3.3 V): 150 mA

4.4 Real Time Clock Options (RTC)

There are three options for an RTC on the AM335x SOM.

4.4.1 PMIC RTC

The default RTC is the one integrated in the Power Management IC at U4. This RTC includes alarm and timekeeping functions. The RTC is supplied by the main system power when it is on, and by the backup battery voltage VBAT_IN_4RTC if present, when the main system power is off and the jumper J10 has been moved from its default position of (1+2) to position (2+3).

4.4.2 External RTC

The SOM also provides an ordering option to populate an additional, external RTC at U2. This external RTC uses less power than the RTC integrated in the PMIC, and it could be used where very-low battery power is important. The external RTC typically uses 350 nA. For comparison, the PMIC's RTC typically uses 6 uA. When using the external RTC, a low-power supervisory device must be populated at U11. The supervisor supplies the power to the external RTC from the system when the system is on, or from the VBAT_IN_4RTC backup battery supply when the system is off, using very low operating current.

4.4.3 AM335x RTC

The AM335x processor also includes an integrated RTC. However, the RTC integrated in the AM335x uses significantly more power than the RTC in the PMIC. Because of this power disadvantage, the SOM has not been designed to support the AM335x RTC with backup power.

4.4.4 Power-On Wake

Two signals, X_INT_RTCn (the interrupts from the external RTC) and X_MII1_RCTL/_GPIO3_4 (from the PMIC's RTC), are provided at the phyCORE-Connector to drive an external power wake circuit not provided on the SOM, allowing the RTCs to wake the system from sleep at a specified time.

5 System Configuration and Booting

Although most features of the AM335x microcontroller are configured or programmed during the initialization routine, other features which impact program execution must be configured prior to initialization via pin termination.

The system start-up configuration includes:

- Clock configuration
- Boot configuration

During the power-on reset cycle the operational system boot mode of the AM335x processor is determined by the configuration of 16 SYSBOOT pins SYS_BOOT[15:0]. These are multiplexed onto the LCD_DATA[15:0] pins. Pins SYS_BOOT[4:0] are used to select interfaces or devices for the booting list. Pin SYS_BOOT[5] enables or disables the master oscillator clock out signal, CLKOUT1. Pins SYS_BOOT[7:6] set the PHY mode for booting from Ethernet. Pin SYS_BOOT[8] identifies the boot device as having 8- or 16-bit bus width. Pin SYS_BOOT[9] determines whether ECC is handled by the ROM or the NAND Flash. Pins SYS_BOOT[15:14] set the master oscillator frequency. All 16 pins are sampled and latched into the SYS_BOOT register bit field on the rising edge of the power-on reset signal, X_PORZ.

The internal ROM code is the first code executed during the initialization process of the AM335x after power-on reset. Besides the other configurations, the ROM code detects which boot devices the controller has to check by using the SYS_BOOT[4:0] pin configuration. For peripheral boot devices, the ROM code polls the communication interface selected, initiates the download of the code into the internal RAM, and triggers its execution from there. Peripheral booting is normally not applicable only after a warm reset. For memory booting, the ROM code finds the bootstrap in permanent memories such as NAND Flash or SD Cards and executes it. Memory booting is normally applicable after a cold or a warm reset. Please refer to the AM335x Technical Reference Manual for more information.

Configuration circuitry (pull-up and pull-down resistors connected to SYS_BOOT[15:0]) is located on the phyCORE module, so no further settings are necessary. The boot configuration of pins SYS_BOOT[4:0] on the standard module with 512 MB NAND Flash is '0b10011'. Consequently, the system tries to boot from NAND Flash first, and, in case of a failure, successively from NANDI2C, MMCO, and UARTO.

The on-board configuration circuitry of SYS_BOOT[15:0] can be overridden by pull-up or pull-down resistors connected to the boot configuration pins X_LCD_D[15:0] of the phyCORE-AM335x.

The following tables show the different boot device orders, which can be selected by configuring the five boot order configuration pins, X_LCD_D[4:0] of the phyCORE-AM335x. Please note that only a subset of possible configurations are listed in the tables.

For a complete list of the AM335x boot modes, refer to the Texas Instruments AM335x Technical Reference Manual.

Boot Mode Selection	Booting Device Order				
X_LCD_D[4:0]	1st	2nd	3rd	4th	
00010	UARTO	SPIO	NAND	NANDI2C	
00110	EMAC1	SPIO	NAND	NANDI2C	
01011	USB0	NAND	SPIO	MMCO	
10010	NAND	NANDI2C	USB0	UARTO	
10011	NAND	NANDI2C	ММСО	UART0 ⁶	
10100	NAND	NANDI2C	SPIO	EMAC1	
10110	SPIO	ММСО	UARTO	EMAC1	
10111	ММСО	SPIO	UARTO	USBO	
11000	SPIO	ММСО	USB0	UARTO	
11001	SPIO	ММСО	EMAC1	UARTO	
11100	MMC1	ММСО	UARTO	USB0	

Table 11:Boot Device Order of AM335x Module

^{6:} Defaults are in **bold blue** text.

6 System Memory

The phyCORE-AM335x provides four types of on-board memory:

- DDR3 SDRAM
- NAND Flash
- SPI Flash
- I²C EEPROM

These following sections of this chapter detail each memory type used on the phyCORE-AM335x.

6.1 DDR3 SDRAM (U7)

The RAM memory of the phyCORE-AM335x is comprised of a 16-bit wide DDR3-SDRAM chip at U7. The chip is connected to the dedicated DDR interface called the Extended Memory Interface (EMIF) of the AM335x processor.

The DDR3-SDRAM memory is accessed via the EMIF0 port starting at 0x8000 0000.

Typically the DDR3-SDRAM initialization is performed by a boot loader or operating system following a power-on reset and must not be changed at a later point by any application code. When writing custom code independent of an operating system or boot loader, SDRAM must be initialized through the appropriate SDRAM configuration registers on the AM335x controller. Refer to the AM335x Technical Reference Manual about accessing and configuring these registers.

6.2 NAND Flash Memory (U10)

The use of NAND Flash as non-volatile memory on the phyCORE-AM335x provides an easily reprogrammable means of code storage.

The NAND Flash memory is connected to the AM335x GPMC interface with a bus-width of 8bits on its CSO chip-select signal. The full GPMC interface is available on the phyCORE connectors. See the AM335x datasheet for the pin-multiplexing options. The locations of the subset of the GPMC interface used for the NAND flash is shown in *Table 12*.

Signal	SOM pin	GPIO Expansion Board Pin	Туре	SL	Description
X_GPMC_AD0	X1A23	3A	IO	3.3 V	Address / Data 0
X_GPMC_AD1	X1A16	2A	IO	3.3 V	Address / Data 1
X_GPMC_AD2	X1A24	5A	IO	3.3 V	Address / Data 2
X_GPMC_AD3	X1A28	6A	I0	3.3 V	Address / Data 3
X_GPMC_AD4	X1A25	8A	I0	3.3 V	Address / Data 4
X_GPMC_AD5	X1A26	9A	IO	3.3 V	Address / Data 5
X_GPMC_AD6	X1A29	11A	IO	3.3 V	Address / Data 6

 Table 12:
 NAND GPMC Signal Map

Signal	SOM pin	GPIO Expansion Board Pin	Туре	SL	Description
X_GPMC_AD7	X1A30	12A	I0	3.3 V	Address / Data 7
X_GPMC_ADVn_ALE	X1A33	14A	IO	3.3 V	Address Latch Enable
X_GPMC_BEOn_CLE	X1A34	15A	IO	3.3 V	Byte 0 Enable
X_GPMC_CSOn	X1B21	17A	IO	3.3 V	Chip select 0
X_GPMC_OEn_REn	X1B22	18A	IO	3.3 V	Output enable / Read enable
X_GPMC_WEn	X1B17	19A	I0	3.3 V	Write enable

 Table 12:
 NAND GPMC Signal Map (cont.)

The flash device is programmable with 3.3 V. No dedicated programming voltage is required.

As of the printing of this manual, NAND Flash devices generally have a life expectancy of at least 100,000 erase/program cycles and a data retention rate of 10 years.

6.2.1 NAND Flash Lock Control (J2)

Jumper J2 controls the block lock feature of the NAND Flash (U10). Setting this jumper to position (1+2) enables the block lock commands and protects or locks all blocks of the device, while position (2+3) will disable the block lock commands. The block lock feature can only be enabled or disabled at power-on of the NAND Flash device. The following configurations are possible:

NAND Flash Lock State	J2
Block lock commands disabled	2+3
Block lock commands enabled	1+2

 Table 13:
 NAND Flash Lock Control via J2⁶

6.2.2 I²C EEPROM (U6)

The phyCORE-AM335x can be populated with a non-volatile 4 KB EEPROM with an I^2C interface as an ordering option. This memory can be used to store configuration data or other general purpose data. This device is accessed through I^2C port 0 on the AM335x.

Two solder jumpers are provided to set two of the lower address bits: J7 and J8. Refer to *Setting 6.2.2.1* for details on setting these jumpers.

Write protection to the device is accomplished via jumper J9. Refer to *Section 6.2.2.2* for details on setting this jumper.

6.2.2.1 Setting the EEPROM Lower Address Bits (J7, J8)

The I²C EEPROM populating U6 on the phyCORE-AM335x SOM allows the user to configure the lower address bits A0, A1, and A2. The four upper address bits of the 7-bit address are fixed at '1010'. On the SOM, A0 is tied to GND. J7 sets address bit A1 and J8 sets address

bit A2. *Table 14* below shows the resulting seven bit I2C device address for the four possible jumper configurations.

U6 I ² C Device Address	J8	J7
1010 000x	2+3	2+3
1010 010x	2+3	1+2
1010 100x	1+2	2+3
1010 110x	1+2	1+2

 Table 14:
 U6 EEPROM I² C Address via J7 and J8⁶

6.2.2.2 EEPROM Write Protection Control (J9)

Jumper J9 controls write access to the EEPROM (U6) device. Closing this jumper allows write access to the device, while removing this jumper will cause the EEPROM to enter write protect mode, thereby disabling write access to the device.

The following configurations are possible:

EEPROM Write Protection State	J9
Write accress allowed	closed
Write protected	open

 Table 15:
 EEPROM Write Protection States via J9⁶

6.2.3 SPI Flash Memory (U5)

The phyCORE-AM335x can be populated with a SPI Flash memory device as an ordering option. This would be suitable for applications which require a small code footprint or small RTOSes.

Using a SPI Flash can eliminate the need to install NAND Flash memory on the SOM. This could reduce BOM costs, free up the NAND signals for other devices on the AM335x GPMC interface, and remove the need for doing the bad block management that is required when using NAND Flash.

6.2.3.1 SPI Write Protect Control (J4)

The SPI Flash includes a write-protect feature. Jumper J4 provides the option to use the SPI flash normally, to write-protect it, or to allow a signal from the carrier board (X_SPI_WPn) to control the SPI Flash's write-protection. These rewrite options are listed in *Table 16*.

SPI Flash Write-Protection	J4
SPI Flash is writable	2+4
SPI Flash is write-protected	2+3
SPI Flash write-protection is controlled by signal X_SPI_WPn from the carrier board	2+1

 Table 16:
 SPI Flash Write-Protection via J4⁶

6.2.3.2 SPI Hold Control (J3)

The SPI Flash includes a hold feature which disables the SPI Flash. The hold feature is controlled with jumper J3. In the default configuration, jumper J3 is installed at (2+3) and the SPI Flash operates normally on SPIO chip select 0.

When jumper J3 is installed at (1+2), the SPI Flash is in hold and SPIO chip select 0 is available for another device.

These options are listed in *Table 17*.

SPI Flash Hold State	J3
SPI Flash works normally	2+3
SPI Flash in hold	1+2

 Table 17:
 SPI Hold Control via J3⁶

6.2.4 Memory Model

There is no special address decoding device on the phyCORE-AM335x, which means that the memory model is given according to the memory mapping of the AM335x. Refer to the AM335x Technical Reference Manual for the memory map.

7 SD/MMC Card Interfaces

The phyCORE-AM335x includes three SD / MMC Card interfaces: MMCO, MMC1 and MMC2. *Table 18* shows the location of the MMCO interface signals identified on the phyCORE-Connector.

Pin #	Signal	Туре	SL	Description
X3B54	X_MMCO_CMD	IO	3.3 V	SD / MMC0 command
X3B53	X_MMCO_CLK	0UT	3.3 V	SD / MMCO clock
X3B55	X_MMCO_DATO	IO	3.3 V	SD / MMCO data bit 0
X3B56	X_MMC0_DAT1	IO	3.3 V	SD / MMCO data bit 1
X3B58	X_MMC0_DAT2	IO	3.3 V	SD / MMCO data bit 2
X3B59	X_MMCO_DAT3	IO	3.3 V	SD / MMCO data bit 3
X3A18	X_MMCO_SDCD	IN	3.3 V	SD / MMCO card detect

 Table 18:
 SD/MMC Interface Signal Locations

8 Serial Interfaces

The phyCORE-AM335x provides numerous serial interfaces, some of which are equipped with a transceiver to allow a direct connection to external devices:

- 1. Up to four high speed Universal Asynchronous Receiver/Transmitter (UART) interfaces with up to 3.6 Mbps at TTL level. These support IrDA and CIR modes, as well as RTS and CTS flow control. One of them, UART1, which provides full modem control, is intended to be used for CAN or Profibus connectivity.
- 2. Two high speed Universal Serial Bus On-The-Go (USB OTG) interfaces with integrated transceivers
- 3. One two-port 10/100/1000 Ethernet Media Access Controller (EMAC) in the MCU which supports MII, RMII, and RGMII Ethernet modes. The phyCORE-AM335x includes a 10/100 Ethernet transceiver on the Ethernet0 port.
- 4. One two-port 10/100 Ethernet Media Access Controller (EMAC) in the PRU which supports EtherCAT
- 5. One Profibus interface
- 6. One Inter-Integrated Circuit (I²C) interfaces
- 7. One Serial Peripheral Interface (SPI) interfaces
- 8. Up to two Controller Area Network (CAN) interfaces
- 9. Up to two Multichannel Audio Serial Port (McASP) interfaces

The following sections of this section detail each of these serial interfaces.

Caution!

Please pay special attention to the Signal Level column in the following tables. Most, but not all, of the serial interfaces signal level is 3.3 V.

8.1.1 Universal Asynchronous Receiver/Transmitter Interfaces (UARTs)

The phyCORE-AM335x provides four high speed universal asynchronous interfaces with up to 3.6 Mbps. These are part of the AM335x MPU. All of these UARTs support IrDA and CIR modes and hardware flow control with RTS and CTS signals. One of them, UART1, supports full modem control.

Table 19 shows the location of the UART signals which are identified by name on the phyCORE connectors.

Pin #	Signal	Туре	Signal Level	Description
X3A32	X_UARTO_TXD	OUT	3.3 V	UART 0 transmit data
X3A33	X_UARTO_RXD	IN	3.3 V	UART 0 receive data
X3B10	X_UART1_TXD	OUT	3.3 V	UART 1 transmit data
X3B11	X_UART1_RXD	IN	3.3 V	UART 1 receive data
X3B8	X_UART1_CTS	IN	3.3 V	UART 1 clear to send

Table 19:UART Signal Locations

Pin #	Signal	Туре	Signal Level	Description
X3B9	X_UART1_RTS	OUT	3.3 V	UART 1 request to send
X3B60	X_UART2_TX	OUT	3.3 V	UART 2 transmit data ⁷
X3A60	X_UART2_RX	IN	3.3 V	UART 2 receive data ⁷
X1A9	X_UART3_TX	OUT	3.3 V	UART 3 transmit data ⁷
X1A8	X_UART3_RX	IN	3.3 V	UART 3 receive data ⁷

Table 19:UART Signal Locations (cont.)

8.1.2 USB OTG Interface

The phyCORE-AM335x provides two high speed USB OTG interfaces which use the AM335x embedded HS USB-OTG PHY. An external USB Standard-A (for USB host), USB Standard-B (for USB device), or USB mini-AB (for USB OTG) connector is all that is needed to inteface the phyCORE-AM335x USB OTG functionality. The applicable interface signals can be found on the phyCORE-Connector as shown in *Table 20*.

Caution!

Note the voltage level on the USB ID signals, X_USB0_ID and X_USB1_ID, is 1.8 V. Steady state voltages above 2.1 V applied to either of these signals may damage the AM335x.

Pin #	Signal	Туре	Signal Level	Description
X3A48	X_USB0_DP	IO	3.3 V	USBO data plus
X3A47	X_USB0_DM	I0	3.3 V	USBO data minus
X3B43	X_USB0_ID	IN	1.8 V	USB0 connector identification signal
X3B41	X_USB0_VBUS	IN	5.0 V	USB0 VBUS detection input
X3B42	X_USB0_DRVVBUS	OUT	3.3 V	USB0 VBUS control output
X3B44	X_USB0_CE	OUT	3.3 V	USB0 charger enable
X3A23	X_GPI03_17	IN	3.3 V	USB0 over-current detection, low true
X3B18	X_USB1_DP	IO	3.3 V	USB1 data plus
X3B19	X_USB1_DM	I0	3.3 V	USB1 data minus
X3B23	X_USB1_ID	IN	1.8 V	USB1 connector identification signal
X3B22	X_USB1_VBUS	IN	5.0 V	USB1 VBUS detection input
X3B21	X_USB1_DRVVBUS	OUT	3.3 V	USB1 VBUS control output
X3B24	X_USB1_CE	OUT	3.3 V	USB1 charger enable
X1B5	X_GPI03_18	IN	3.3 V	USB1 over-current detection, low true

Table 20:USB OTG Signal Locations

8.1.3 Ethernet Interfaces

Connection of the phyCORE-AM335x to the World Wide Web or a local area network (LAN) is possible using the AM335x processor's integrated 10/100/1000 Ethernet switch. The switch has two ports: Ethernet1 and Ethernet2. The phyCORE-AM335x provides access to both of these ports.

^{7:} These UART2 and UART3 signals are not available if the Ethernet1 interface is configured for MII mode. See the AM335x Datasheet for pin options

X3 Pin #	Signal	Туре	Signal Level	Description
X3A10	X_ETH_TX+	DIFF100	3.3 V	Ethernet transmit positive output
X3A9	X_ETH_TX-	DIFF100	3.3 V	Ethernet transmit negative output
X3A13	X_ETH_LED2	OUT	3.3 V	Ethernet Speed Indicator (open drain)
X3A7	X_ETH_RX+	DIFF100	3.3 V	Ethernet receive positive input
X3A6	X_ETH_RX-	DIFF100	3.3 V	Ethernet receive negative input
X3A14	X_ETH_LED1	OUT	3.3 V	Ethernet link indicator (open drain)

8.1.3.1 Ethernet1

Table 21:Ethernet1 Signal Locations

The LAN8710AI Ethernet transceiver supports HP Auto-MDIX technology, eliminating the need for the consideration of a direct connect LAN cable, or a cross-over patch cable. It detects the TX and RX pins of the connected device and automatically configures the PHY TX and RX pins accordingly. The interrupt signal of the LAN8710AI connects to the AM335x interrupt 1 signal (X_INTR1) if resistor R55 is installed. Resistor R55 is not installed by default.

Connecting the phyCORE-AM335x to an existing 10/100Base-T network involves adding an RJ45 and appropriate magnetic devices in your design. The required 50 0hm +/-1 % termination resistors on the analog signals (ETH_RX±, ETH_TX±) are already populated on the module. Connection to an external Ethernet magnetics should be done using short signal traces. The TX+/TX- and RX+/RX- signals should be routed as 100 0hm differential pairs. The same applies for the signal lines after the transformer circuit. The carrier board layout should avoid any other signal lines crossing the Ethernet signals.

The two LED control output signals for the Ethernet1 interface are also configuration inputs for the Ethernet transceiver on the SOM. To ensure the transceiver powers up into the planned configuration with its internal voltage regulator and interrupt signal enabled, the X_ETH_LED2/_INTSELn signal should connect on the GND side of its LED and the X_ETH_LED1/_REGOFF signal should connect on the power side of its LED. Please consult the phyCORE-AM335x Carrier Board schematics or the SMSC LAN8710A datasheet for a reference circuit.

Caution!

Please see the datasheet of the SMSC LAN8710A Ethernet controller when designing the Ethernet transformer circuitry.

The AM335x Ethernet1 MII/RMII signals also route to the phyCORE-Connectors. This provides the option to not populate the Ethernet transceiver (U3) on the SOM, and use these signals for other purposes.

Pin #	Signal	Туре	Signal Level	Description
X1B3	X_MDIO_CLK	OUT	3.3 V	Ethernet MDIO inteface clock
X1B2	X_MDIO_DATA	IO	3.3 V	Ethernet MDIO interface data
X3B60	X_UART2_TX	I0	3.3 V	GMII/RMII Rx clock
X1B6	X_GMII1_RCTL/_GPIO3_4	I0	3.3 V	GMII Rx data valid
X1A1	X_GMII1_RXER_/MCASP1_FSX	I0	3.3 V	GMII Rx error
X1A3	X_GMII1_RXD0/_GPI02_21	10	3.3 V	GMII/MII Rx data 0
X1A4	X_GMII1_RXD1/_GPI02_20	IO	3.3 V	GMII/MII Rx data 1
X1A9	X_GMII1_RXD2/_UART3_TX	I0	3.3 V	GMII Rx data 2
X1A8	X_GMII1_RXD3/_UART3_RX	IO	3.3 V	GMII Rx data 3
X3A60	X_UART2_RX	I0	3.3 V	MII/RMII Tx clock
X1A10	X_GMII1_TXEN/_MCASP1_AXR0	I0	3.3 V	GMII/RMII Tx enable
X1A11	X_GMII1_TXD0/_GPI00_28	IO	3.3 V	GRMII/MII Tx data 0
X1A13	X_GMII1_TXD1/_GPI00_21	I0	3.3 V	GRMII/MII Tx data 1
X3A24	X_DCANO_RX	IO	3.3 V	MII Tx data 2
X3A25	X_DCANO_TX	IO	3.3 V	MII Tx data 3
X1A14	X_GMII1_COL/MCASP1_AXR2	I0	3.3 V	GMII COL
X1A15	X_GMII1_CRS/_MCASP1_ACLKX	I0	3.3 V	GMII CRS / RMII CRS_DV

Table 22:Ethernet1 TTL Signal Locations

8.1.3.1.1 Configuring the Ethernet1 Interface Mode

The phyCORE-AM335x design allows the transceiver on the Ethernet1 interface to run in either RMII or MII mode. The RMII mode has the advantage that it uses fewer signals than MII mode, freeing up some signals to be used for other uses, including UART2, UART3 and DCAN0. However, an AM335x silicon errata with the RMII reference clock prevents the interface from running at the 100 Mbit/s transfer rate in RMII mode unless an additional crystal is added.

The phyCORE-AM335x hardware configurations for MII and RMII modes are shown in Table 23, Table 24, and *Table 25*.

Jumper	MII	RMII
J1	2+3	1+2
J5	1+2	1+2
J6	2+3	1+2

 Table 23:
 Jumper Configurations for MII and RMII modes

Resistor	MII	RMII	Package
R4	do not install	10 k0hm	0402
R30	100 Ohm	do not install	0402
R31	100 Ohm	do not install	0402
R32	10 kOhm	do not install	0402

Table 24:Resistor Configurations for MII and RMII modes

phyCORE AM335x [PCM-051]

Resistor	MII	RMII	Package
R50	do not install	0 Ohm	0402
R108	do not install	10 k0hm	0402
R134	100 Ohm	do not install	0402
R138	100 Ohm	do not install	0402
R139	100 Ohm	do not install	0402
R140	100 Ohm	do not install	0402
R141	100 Ohm	do not install	0402
R143	100 Ohm	do not install	0402

 Table 24:
 Resistor Configurations for MII and RMII modes (cont.)

Crystal Oscillator	MII (10/100M)	RMII (10M)	RMII (100M)	Package
XT3	do not install	do not install	50.000 MHz ⁸	J032

 Table 25:
 Crystal Configurations for MII and RMII modes

8.1.3.2 Ethernet2

The AM335x Ethernet2 interface signals can connect to any industry standard Ethernet tranceiver or they can be used for other purposes. The AM335x processor supports MII, RMII, GMII, and RGMII modes on this interface.

It is strongly recommended to place the Ethernet PHY on the Carrier Board close to the pins of the SOM's Ethernet interface to achieve a trace length of less than 100 mm.

The Ethernet2 interface signals are available on the phyCORE connector on the pins listed in Table 26.

Pin#	Signal name	Туре	Signal Level	Description
X1B42	X RGMII2 TCTL	OUT	3.3 V	RGMII or RMII transmit control, GMII transmit
X10 E			5.5 1	enable
X1A41	X_RGMII2_TCLK	OUT	3.3 V	RGMII or GMII transmit clock
X1A36	X_RGMII2_TD3	OUT	3.3 V	RGMII or GMII transmit data bit 3
X1A39	X_RGMII2_TD2	OUT	3.3 V	RGMII or GMII transmit data bit 2
X1B41	X_RGMII2_TD1	OUT	3.3 V	RGMII, GMII or RMII transmit data bit 1
X1A40	X_RGMII2_TD0	OUT	3.3 V	RGMII, GMII or RMII transmit data bit 0

Table 26:Ethernet2 Signal Locations

^{8:} SOM Ordering option

Pin#	Signal name	Туре	Signal Level	Description
X1A38	X_RMII2_CRS_DV	IN	3.3 V	RMII carrier sense or data valid. Note that on the AM335x processor, this signal pin is shared with the WAITO signal which is needed to boot from NAND Flash.
X1A35	X_RGMII2_RCTL	IN	3.3 V	RGMII receive control or GMII receive data valid
X1A43	X_RGMII2_RCLK	IN	3.3 V	RGMII or GMII receive clock
X1B40	X_RGMII2_RD3	IN	3.3 V	RGMII or GMII receive data bit 3
X1A44	X_RGMII2_RD2	IN	3.3 V	RGMII or GMII receive data bit 2
X1A45	X RGMII2 RD1	IN	3.3 V	RGMII, GMII or RMII receive data bit 1
X1A46	X_RGMII2_RD0	IN	3.3 V	RGMII, GMII or RMII receive data bit 0
X1B37	X_RGMII2_INT	IN	3.3 V	Ethernet interrupt
X1B3	X_MDIO_CLK	OUT	3.3 V	Control interface clock
X1B2	X_MDIO_DATA	IO	3.3 V	Control interface data

Table 26:Ethernet2 Signal Locations (cont.)

8.1.4 Profibus

The Profibus interface is available on the AM335x Programmable Real-Time Unit (PRU) UARTO signals. This UART is in addition to the six high-speed UARTs mentioned above, which are part of the AM335x MPU.

The PRU UARTO / Profibus signals are available on either UART1 or SPIO pins as signal multiplexing options. *Table 27* lists the signal locations on the phyCORE connectors.

Pin#	Signal	Туре	Signal Level	Description
X3B10	X_UART1_TXD/_P_UART0_TXD	OUT	3.3 V	Profibus Tx (option 1)
X3B11	X_UART1_RXD/_P_UART0_RXD	IN	3.3 V	Profibus Rx (option 1)
X3A17	X_SPIO_CSO	OUT	3.3 V	Profibus Tx (option 2)
X3A35	X_SPIO_D1	IN	3.3 V	Profibus Rx (option 2)

Table 27:Profibus Signal Location Options

8.1.5 I²C Interface

The Inter-Integrated Circuit (I^2C) interface is a two-wire, bi-directional serial bus that provides a simple and efficient method for data exchange among devices. The AM335x contains three identical and independent I^2C modules. Even though the signals of all three I^2C modules are available on the phyCORE-Connector only I2CO is intended to be used as I^2C interface. I^2C module ICO also connects to the on-board EEPROM (refer to *Section 6.2.2*), the PMIC (refer to *Section 4.3*), and the optional RTC device at U2 (refer to *Section 4.4*). *Table 28* lists the I^2C ports on the phyCORE-Connector.

Pin #	Signal	Туре	Signal Level	Description
X3A19	X_I2C0_SCL	OUT	3.3 V	I2C0 clock (open drain with pull-up resistor on the SOM)
X3A20	X_I2CO_SDA	IO	3.3 V	I2C0 data (open drain with pull-up resistor on the SOM)

Table 28:If C Interface Signal Locations

To avoid any conflicts when connecting external I^2C devices to the I2CO interface of the AM335x, the addresses of the on-board I^2C devices must be considered. *Table 29* lists the addresses already in use. The address of the EEPROM can be configured by jumpers. *Table 29* shows only the default addresses. Refer to *Section 6.2.2.1* for alternative address settings.

I ² CAddress (7 MSB)	Connected Devices	Maximum Speed	See Section
0x12	PMIC's (U4) SmartReflex (SR-I ² C) control interface	3.4 Mbps	4.3
0x2D	PMIC's (U4) general-purpose serial control (CTL-I ² C) inteface	3.4 Mbps	4.3
0x52	I ² C EEPROM (U6)	400 kbps	6.2.2.1
0x68	Optional Real-Time Clock (U2).	400 kbps	4.4.2

Table 29:I² C Addresses in Use

8.1.6 SPI Interfaces

The Serial Peripheral Interface (SPI) is a four-wire, bidirectional synchronous serial bus that provides a simple and efficient method for data exchange among devices. The AM335x includes two SPI modules. These modules are Master/Slave configurable and each support up to two devices. The interface signals of the first module (SPI0) are identified on the phyCORE-Connector. If there is a SPI Flash installed on the SOM, it connects to SPI1_CSO.

Table 30 lists the SPI signals which are identified by name on the phyCORE-Connector:

Pin #	Signal	Туре	Signal Level	Description
X3A17	X_SPI0_CS0	0UT	3.3 V	SPIO chip select 0 (used by SPI Flash U5 if installed)
X3A35	X_SPI0_D1	OUT	3.3 V	SPIO master output / slave input (MOSI) data
X3A34	X_SPIO_DO	IN	3.3 V	SPIO master input / slave output (MISO) data
X3A15	X_SPIO_CLK	OUT	3.3 V	SPIO clock

 Table 30:
 SPIO Interface Signal Locations

8.1.7 Controller Area Network (CAN) Interfaces

The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed real time control with a high level of security.

The AM335x includes two CAN interfaces, DCANO and DCAN1. These support bitrates up to 1 MBit/s and are compliant to the CAN 2.0B protocol specification. Each of the two CAN interfaces has three different pin multiplexing options out of the AM335x processor. These signal options are listed in *Table 31*.

Signal	phyCORE Pin	Schematic Signal Name	Signal Level	Availability Notes
	X3A24	X_DCANO_RX	3.3 V	Not available for CAN if the Ethernet1 PHY on the SOM is configured for MII mode
DCANO_RX	X3A32	X_UARTO_TXD	3.3 V	Available; routes directly to the phyCORE- Connector
	X3B9	X_UART1_RTS	3.3 V	Available; routes directly to the phyCORE- Connector
	X3A25	X_DCANO_TX	3.3 V	Not available for CAN if the Ethernet1 PHY on the SOM is configured for MII mode
DCANO_TX	X3A33	X_UARTO_RXD	3.3 V	Available; routes directly to the phyCORE- Connector
	X3B8	X_UART1_CTS	3.3 V	Available; routes directly to the phyCORE- Connector
	X3B54	X_MMCO_CMD	3.3 V	Available; routes directly to the phyCORE- Connector
DCAN1_RX	X3B50	X_GPI0_1_9	3.3 V	Available; routes directly to the phyCORE- Connector
	X3B10 X_UART1_TXD_/_P_UART0_TXD		3.3 V	Available; routes directly to the phyCORE- Connector
	X3B53	X_MMCO_CLK	3.3 V	Available; routes directly to the phyCORE- Connector
DCAN1_TX	X3B51	X_GPI0_1_8	3.3 V	Available; routes directly to the phyCORE- Connector
	X3B11	X_UART1_RXD_/_P_UART0_RXD	3.3 V	Available; routes directly to the phyCORE- Connector

 Table 31:
 DCANO and DCAN1 Signal Locations

8.1.8 Multichannel Audio Serial Ports (McASP)

The two multichannel audio serial port (McASP) interfaces of the phyCORE-AM335x are general audio serial ports optimized for the requirements of various audio applications. The McASP is useful for intercomponent digital audio interface transmission (DIT). The McASP interfaces support many audio formats including SPDIF, IEC60958-1, AES-3, TDM, I^2S , and similar formats.

The McASPO signals which are used on the PHYTEC Carrier Board are listed in *Table 32*. See *Texas Instrument's AM335x Data Sheet* for all of the pin multiplexing options for the two McASP interface signals.

Pin #	Signal	Туре	Signal Level	Description
X3A22	X_McASP0_AXR0	IO	3.3 V	McASPO serial data
X3A29	X_McASP0_FSX	IO	3.3 V	McASP0 frame synchronization transmit
X3A27	X_McASP0_AHCLKX	IO	3.3 V	McASPO high frequency clock
X3A28	X_McASP0_AXR1	I0	3.3 V	McASPO serial data
X3B16	X_McASP0_ACLKX	IO	3.3 V	McASP0 transmit bit clock
X1A1	X_RMII1_RXER/_MCASP1_FSX	IO	3.3 V	McASP1 frame synchronization transmit
X1A10	X_RMII1_TXEN/_MCASP1_AXR0	IO	3.3 V	McASP1 serial data
X1A14	X_MII1_COL/_MCASP1_AXR2	IO	3.3 V	McASP1 serial data
X1A15	X_RMII1_CRS/_MCASP1_ACLKX	IO	3.3 V	McASP1 transmit bit clock

Table 32:McASP Signal Locations

9 General Purpose I/Os

The phyCORE-AM335x provides seven GPIOs⁹. Beside these seven GPIOs, most of the pins of the phyCORE-AM335x which are connected directly to the AM335x can be configured to act as GPIOs, due to the function multiplexing at most controller pins. The GPIO pins can be used as data input with an optional and configurable debounce cell or data output. Furthermore, many of the pins support an interrupt generation in active mode and wake-up request generation in idle mode upon the detection of external events. With the pad configuration feature of the AM335x, you can also configure the GPIO to have an optional pull-up or pull-down.

Pin #	Signal	Туре	Signal Level	Description
X1B20	X_GPI0_3_7	IN	3.3 V	Button 1 status
X1B18	X_GPI0_3_8	IN	3.3 V	Button 2 status
X3A23	X_GPI0_3_17	IN	3.3 V	USB0 over-current detection
X1B5	X_GPI0_3_18	IN	3.3 V	USB1 over-current detection
X3B15	X_GPI0_3_19	OUT	3.3 V	Profibus transceiver drive-enable
X3B47	X_GPI0_1_30	OUT	3.3 V	LED1 control
X3B48	X_GPI0_1_31	OUT	3.3 V	LED2 control

Table 33:Dedicated GPIO Signal Locations

As can be seen in *Table 33*, the voltage level is 3.3 V. To avoid driving signals into the SOM when it is not powered, external devices connected to these pins should be supplied by the reference voltage VAUX2_3P3V, or by a supply which is enabled by this voltage. Alternatively an open drain circuit with a pull-up resistor attached to VAUX2_3P3V can be connected to the GPIOs of the phyCORE-AM335x.

Caution!

Please take care to not load the reference voltage VAUX2_3P3V too heavily to avoid any dysfunction or damage of the module. The maximum load is 150 mA.

^{9:} To support all features of the phyCORE-AM335x Carrier Board, special functions have been assigned to the GPIOs in the BSP delivered with the module. In order to otherwise utilize the GPIOs, the software must be changed. *Table 33* lists the functions assigned to the GPIO pins.

9.1 Analog Inputs

The phyCORE-AM335x provides eight analog input signals. *Table 34* lists the functions assigned to the analog input signals.

Note:

To support the display touch-control feature of the phyCORE-AM335x Carrier Board, the touch-control function has been assigned to the four analog input signals X_AIN0 to X_AIN3 in the BSP delivered with the module. In order to otherwise utilize these signals, the software must be changed.

Pin #	Signal	Туре	Signal Level	Description
X3B38	X_AINO	IN	1.8 V	Display touch X+
X3B37	X_AIN1	IN	1.8 V	Display touch X-
X3B34	X_AIN2	IN	1.8 V	Display touch Y+
X3B35	X_AIN3	IN	1.8 V	Display touch Y-
X3B32	X_AIN4	IN	1.8 V	Analog input
X3B31	X_AIN5	IN	1.8 V	Analog input
X3B29	X_AIN6	IN	1.8 V	Analog input
X3B28	X_AIN7	IN	1.8 V	Analog input

Table 34:Analog Input Signals

10 Debug Interface (X2)

The phyCORE-AM335x is equipped with a JTAG interface to download program code into the external flash, internal controller RAM, or to debug programs which are being executed. The JTAG interface connects to a 2.54 mm pitch pin header at X2 on the edge of the module PCB. Optionally, the JTAG can be connected to the phyCORE-Connector X1. *Figure 8* shows the position of the debug interface connector X2 on the phyCORE-AM335x. Even numbered pins are on the top of the module, starting with 2 on the right to 20 on the left, while odd number pins are on the bottom, starting from (as viewed from the top) 1 on the right to 19 on the left.

Figure 8: JTAG Interface X2 (top view)

The JTAG edge card connector X2 provides an easy means of debugging the phyCORE-AM335x in your target system via an external JTAG probe.

Note:

The JTAG connector X2 only populates phyCORE-AM335x modules with order code PCM-051-xxxxxJxx. This version of the phyCORE module must be special ordered. The JTAG connector X2 is not populated on phyCORE modules included in the Rapid Development Kit. All JTAG signals are accessible from the carrier board. The JTAG signals are also accessible at the optional phyCORE-Connector X1 (Samtec connectors). PHYTEC recommends integrating a standard (2.54 mm pitch) pin header connector in the user target circuitry to allow easy program updates via the JTAG interface. See *Table 36* for details on the JTAG signal pin assignment.

Table 35 shows the pin assignment of the JTAG connector X2. The locations of the JTAG signals on the optional phyCORE-Connector X1 are shown in *Table 36*.

Signal	Pin Row		Signal	
Signat	Α	В	Signat	
VMMC_3P3V	2	1	JTAG_TREF (3.3 V via 100 0hm)	
GND	4	3	X_TRSTn	
GND	6	5	X_TDI	
GND	8	7	X_TMS	
GND	10	9	X_TCK	
GND	12	11	X_TCK	
GND	14	13	X_TDO	
GND	16	15	X_RESET_OUTn	
GND	18	17	no-connect	
GND	20	19	no-connect	

 Table 35:
 JTAG Connector X2 Signal Assignment¹⁰

Pin #	Signal	Туре	Signal Level	Description
X1B10	X_TDO	OUT	3.3 V	JTAG test data output
X1B12	X_TMS	OUT	3.3 V	JTAG test mode select
X1B8	X_TCK	OUT	3.3 V	JTAG test clock input
X1B11	X_TRSTn	IN	3.3 V	JTAG test reset
X1B7	X_TDI	IN	3.3 V	JTAG test data input

 Table 36:
 Location of JTAG Signals on the optional phyCORE-Connector

^{10:} Row A is on the controller side of the module and Row B is on the connector side of the module

11 Display Interface

The phyCORE-AM335x provides a configurable parallel display interface with up to 24 data bits and backlight and touch-screen control.

11.1 Parallel Display Interfaces

The 24-bit integrated LCD Interface Display Driver (LIDD) of the AM335x is directly connected to the phyCORE-Connector. The location of the applicable interface signals can be found in *Table 37*. In addition, signal X_ECAP0_IN_PWM0_OUT can be used as PWM output to control the display brightness.

Pin #	Signal	Туре	Signal Level	Description
X3B26	X_ECAPO_IN_PWMO_OUT	OUT	3.3 V	PWM output, can be used for display brightness control
X1B27	X_LCD_DATA23	OUT	3.3 V	LCD data bit 23
X1B28	X_LCD_DATA22	OUT	3.3 V	LCD data bit 22
X1B26	X_LCD_DATA21	0UT	3.3 V	LCD data bit 21
X1B30	X_LCD_DATA20	OUT	3.3 V	LCD data bit 20
X1B31	X_LCD_DATA19	OUT	3.3 V	LCD data bit 19
X1B32	X_LCD_DATA18	OUT	3.3 V	LCD data bit 18
X1B38	X_LCD_DATA17	OUT	3.3 V	LCD data bit 17
X1B36	X_LCD_DATA16	OUT	3.3 V	LCD data bit 16
X3A54	X_LCD_DATA15	OUT	3.3 V	LCD data bit 15
X3A53	X_LCD_DATA14	OUT	3.3 V	LCD data bit 14
X3A44	X_LCD_DATA13	OUT	3.3 V	LCD data bit 13
X3A49	X_LCD_DATA12	OUT	3.3 V	LCD data bit 12
X3B49	X_LCD_DATA11	OUT	3.3 V	LCD data bit 11
X3A59	X_LCD_DATA10	OUT	3.3 V	LCD data bit 10
X3A58	X_LCD_DATA9	OUT	3.3 V	LCD data bit 9
X3A52	X_LCD_DATA8	OUT	3.3 V	LCD data bit 8
X3A57	X_LCD_DATA7	OUT	3.3 V	LCD data bit 7
X3A55	X_LCD_DATA6	OUT	3.3 V	LCD data bit 6
X3A40	X_LCD_DATA5	OUT	3.3 V	LCD data bit 5
X3A39	X_LCD_DATA4	0UT	3.3 V	LCD data bit 4
X3A37	X_LCD_DATA3	OUT	3.3 V	LCD data bit 3
X3A38	X_LCD_DATA2	OUT	3.3 V	LCD data bit 2
X3A43	X_LCD_DATA1	OUT	3.3 V	LCD data bit 1
X3A42	X_LCD_DATA0	OUT	3.3 V	LCD data bit 0
X3A45	X_LCD_HSYNC	OUT	3.3 V	LCD horizontal synchronization
X3B46	X_LCD_PCLK	OUT	3.3 V	LCD pixel clock
X3B47	X_LCD_VSYNC	OUT	3.3 V	LCD vertical synchronization
X3A50	X_LCD_BIAS_EN	OUT	3.3 V	LCD AC bias enable

Table 37:Parallel Display Interface Signal Locations

11.2 Touch Screen Controller

The AM335x processor includes an integrated touch screen controller to connect to a resistive touch panel such as is typically integrated in a LCD panel.

The AM335x's eight analog signals, AIN[7:0], are routed to the primary phyCORE-Connector X3. Some or all of these can be connected to a resistive touch panel. The PHYTEC carrier board connects four of these signals to a touch screen integrated in a LCD display. These signals are mapped as follows:

- AINO = TOUCH_X+
- AIN1 = TOUCH_X-
- AIN2 = TOUCH_Y+
- AIN3 = TOUCH_Y-

Care should be taken in carrier board layout to isolate the analog signals shown in *Table 38* from noise sources such as power supplies or digital signals.

Pin #	Signal	Туре	Signal Level	Description
X3B38	X_AINO	IN	1.8 V	AM335x analog input (TOUCH_X+)
X3B37	X_AIN1	IN	1.8 V	AM335x analog input (TOUCH_X-)
X3B34	X_AIN2	IN	1.8 V	AM335x analog input (TOUCH_Y+)
X3B35	X_AIN3	IN	1.8 V	AM335x analog input (TOUCH_Y-)

 Table 38:
 AIN[3:] Signal Location

12 Technical Specifications

The physical dimensions of the phyCORE-AM335x are represented in *Figure 9*. The module's profile is max. 5.0 mm thick, with a maximum component height of 1.5 mm on the bottom (connector) side of the PCB and approximately 2.0 mm on the top (microcontroller) side. The board itself is approximately 1.5 mm thick.

dimensions referenced to the outside edges have a tolerance of +/- 0.2 mm; all other dimensions have a tolerance of +/- 0.1 mm (unless otherwise noted) *Figure 9: Physical Dimensions*

Additional Specifications:

Dimensions:	44 mm x 50 mm		
Weight:	Approximately 16 g with all optional components mounted on the circuit board		
Storage temperature:	-40 °C to +125 °C		
Operating temperature:	0 °C to +70 °C (commercial) -40 °C to +85 °C (industrial) ¹¹		
Humidity:	95 % r.F. not condensed		
Operating voltage:	VCC 5.0 V		
Power consumption:	VCC 5.0 V / 0.4 A / 2 Watts typical		
	Maximum 3 Watts		
	Conditions:		
	512 MB DDR3-SDRAM, 512 MB NAND Flash, Ethernet, 600 MHz CPU frequency,		
	20 °C		

These specifications describe the standard configuration of the phyCORE-AM335x as of the printing of this manual.

Connectors on the phyCORE:

X1 Manufacturer:	Samtec
Number of pins per contact Rows:	100 (2 Rows of 50 pins each)
Samtec part number (lead free):	BSH-050-01-L-D-A (receptacle)
Mating connector:	BTH-050-01-L-D-A (header)
Mated height:	5 mm
X3 Manufacturer:	Samtec
Number of pins per contact Row:	120 (2 Rows of 60 pins each)
Samtec part number (lead free):	BSH-060-01-L-D-A (receptacle)
Mating connector:	BTH-060-01-L-D-A (header)
Mated height:	5 mm

Different heights are offered for the receptacle sockets that correspond to the connectors populating the underside of the phyCORE-AM335x. The given connector height indicates the distance between the two connected PCBs when the module is mounted on the corresponding carrier board. In order to get the exact spacing, the maximum component height (1.5 mm) on the bottom side of the phyCORE must be subtracted.

Please refer to the corresponding datasheets and mechanical specifications provided by Samtec (*www.samtec.com*).

^{11:} In order to guarantee reliable functioning of the SOM up to the maximum temperature, appropriate cooling measures must be provided. Use of the SOM at high temperature impacts the SOM's life span.

13 Integrating and Handling the phyCORE-AM335x

13.1 Integrating the phyCORE-AM335x

Successful integration in user target circuitry greatly depends on the adherence to the layout design rules for the GND connections of the phyCORE module. As a general design rule, PHYTEC recommend connecting all GND pins neighboring signals which are being used in the application circuitry. For the power supply of the module, at least 10 GND pins corresponding to the VCC pins must be connected (refer to *Section 1.4*). For maximum EMI performance, all GND pins should be connected to a solid ground plane.

Besides this hardware manual, a lot of information is available to facilitate the integration of the phyCORE-AM335x into customer applications.

- The design of the standard phyCORE carrier board can be used as a reference for any customer application.
- Many answers to common questions can be found at:

www.phytec.de/produkt/system-on-modules/phycore-am335x-download/#faq www.phytec.eu/product-eu/system-on-modules/phycore-am335x-download/#faq

• The link "Carrier Board" within the category Dimensional Drawing leads to the layout data as shown in . It is available in different file formats.

Different support packages are available to support you in all stages of your embedded development. Please visit:

www.phytec.de/support/support-pakete/
www.phytec.eu/support/support-packages/

or contact PHYTEC's sales team for more details.

dimensions referenced to the outside edges have a tolerance of +/- 0.2 mm; all other dimensions have a tolerance of +/- 0.1 mm (unless otherwise noted)

the shaded area represents space to place noncritical components (no RF emission, no thermal radiation, etc.) underneath the module

please bear in mind the maximum height of the components given by the height of the connectors and the components on the bottom side of the SOM

Figure 10: phyCORE-AM335x Footprint
13.2 Handling the phyCORE-AM335x

Removal of various components, such as the microcontroller and the standard quartz, is not advisable given the compact nature of the module. Should this nonetheless be necessary, ensure that the board as well as surrounding components and sockets remain undamaged while de-soldering. Overheating the board can cause the solder pads to loosen, rendering the module inoperable. If soldered components need to be removed, the use of a desoldering pump, desoldering braid, an infrared desoldering station, desoldering tweezers, hot air rework station or other desoldering method is strongly recommended. Follow the instructions carefully for whatever method of removal is used.

Caution!

If any modifications to the module are performed, regardless of their nature, the manufacturer guarantee is voided.

14 PCM-953/phyCORE-AM335x Carrier Board

The carrier board can also serve as a reference design for development of custom target hardware in which the phyCORE SOM is deployed. Carrier Board schematics with BoM are available under a Non Disclosure Agreement (NDA). Re-use of carrier board circuitry likewise enables users of PHYTEC SOM to shorten time-to-market, reduce development costs, and avoid substantial design issues and risks.

The information and all board images in the following sections are applicable to the 1359.2 PCB revision of the phyCORE-AM335x Carrier Board.

14.1 Concept of the phyCORE Carrier Board

PHYTEC phyCORE-AM335x Carrier Boards are fully equipped with all mechanical and electrical components necessary for the speedy and secure start-up along with subsequent communication to and programming of applicable PHYTEC System on Module (SOM) modules.

phyCORE-AM335x Carrier Boards are designed for evaluation, testing and prototyping of PHYTEC System on Modules in laboratory environments prior to their use in customer designed applications. The carrier board design allows easy connection of additional expansion boards featuring various functions that support fast and convenient prototyping and software evaluation.

This modular development platform concept includes the following components:

- The **phyCORE-AM335x System on Module** populated with the AM335x processor and all applicable SOM circuitry such as DDR3 SDRAM, Flash, and an Ethernet transceiver to name a few
- The **phyCORE-AM335x Carrier Board** which offers all essential components and connectors for start-up including a power socket which enables connection to an external power adapter, interface connectors such as RS-232, USB, CAN and Ethernet, allowing for use of the SOM's interfaces with standard cables

The following sections contain information specific to the operation of the phyCORE-AM335x mounted on the phyCORE-AM335x Carrier Board.

14.2 Features

The phyCORE-AM335x Carrier Board has the following features for supporting the phyCORE-AM335x modules:

- Power supply circuits to supply the phyCORE-AM335x and the peripheral devices of the carrier board
- RS-232 transceiver supporting UARTO of the phyCORE-AM335x with data rates of up to 1 Mbps and RS-232 connector
- One USB OTG interface brought out to a USB Standard-A connector
- One USB OTG interface brought out to a USB Mini-AB connector
- RJ45 jack for 10/100 Mbps Ethernet
- 10/100/1000 Mbps Ethernet PHY and RJ-45 jack
- CAN transceiver and male DB9 connector
- Profibus transceiver and female DB9 connector
- Audio codec and jacks for microphone input and audio output
- PHYTEC Display Interface connector with touch support
- Secure Digital Memory Card / MultiMedia Card Interface (SD / MMC)
- Connector for a WiFi / Bluetooth module
- Expansion board connectors
- Jumpers to configure interface options
- Switch to configure the boot order of the AM335x processor
- Backup battery to power the SOM Real-Time Clock (RTC)

14.3 Overview of the phyCORE-AM335x Peripherals

The phyCORE-AM335x Carrier Board is depicted in *Figure 11*. It is equipped with the components and peripherals listed in Table 39, Table 40, Table 41, and *Table 42*. For a more detailed description of each peripheral, refer to the appropriate chapter listed in the applicable table. *Figure 11* highlights the location of each peripheral for easy identification.

Figure 11: phyCORE-AM335x Carrier Board Connectors and Buttons (top view)

14.3.1 Connector and Pin Headers

Table 39 lists all available connectors on the phyCORE-AM335x Carrier Board. *Figure 11* highlights the location of each connector for easy identification.

Reference Designator	Description	See Section
X1	phyCORE connector #2, 2x50 pins	2
X2	phyCORE connector #1, 2x60 pins	2
Х3	Wall adapter input power jack to supply main board power (+5 V)	14.4.2
X4	PHYTEC Display Interface data	14.4.12
X5	Expansion connector	15
X7	USB0 On-The-Go connector (USB Mini-AB)	14.4.8
X8	USB1 Host connector (USB 2.0 Standard-A)	14.4.8
X9	Ethernet 2 RJ45 gigabit ethernet connector	14.4.3.2
X10	EtherCAT 0 RJ45 jack	14.4.4
X11	EtherCAT 1 RJ45 jack	14.4.4
X12	Ethernet 1 RJ45 jack	14.4.3.1
X13	CAN DB9-Male	14.4.7
X14	Microphone input connector (3.5 mm audio jack)	14.4.14
X15	Headphone output connector (3.5 mm audio jack)	14.4.14
X16	Mono audio output (3.5 mm audio jack)	14.4.14
X17	Loudspeaker output (3.5 mm audio jack)	14.4.14
X18	RS-232 DB9-Female	14.4.6
X19	Profibus DB9-Female	14.4.5
X20	Secure Digital Memory / MultiMedia Card slot	14.4.13
X21	JTAG pin header	14.4.11
X27	WiFi module pin header	14.4.15
X29	3.3 V power supply connection	14.4.2
X31	PHYTEC Display Interface power	14.4.12

Table 39:
 phyCORE-AM335x Carrier Board Connectors and Pin Headers

Note:

Ensure that all module connections do not exceed their expressed maximum voltage or current. Maximum signal input values are indicated in the corresponding controller User's Manual/Data Sheets. As damage from improper connections varies according to use and application, it is the user's responsibility to take appropriate safety measures to ensure that the module connections are protected from overloading from connected peripherals.

14.3.2 Buttons and Switches

The phyCORE-AM335x Carrier Board is populated with four push-button switches which are essential for the operation of the phyCORE-AM335x module on the carrier board. *Figure 12* shows the location of the push- buttons.

Figure 12: Carrier Board Button Locations

It is generally recommended to debounce all signals from buttons which route to the phyCORE connectors. It is required to debounce the reset signal to the phyCORE-AM335x. The AM335x reset input does not provide adequate debounce time to stabilize an external push-button circuit. So without signal debouncing, the processor could potentially start running while external components are still in reset.

Button	Description	See Section
S1 (SOM ON/OFF)	Control switch for the PMIC on the SOM.	4.3
S6 (Reset)	System Reset Button – issues a system warm reset, must include a debounce circuit	5
S7 (Power)	Power Button – issues a system power on/off event to the PMIC on the SOM	4.3
S8 (Button1)	User button BTN1 - Toggles AM335x GPI0_3_7 signal if jumper JP18 is installed on the Carrier Board.	3/9
S9 (Button2)	User button BTN2 - Toggles AM335x GPI0_3_8 signal if jumper JP19 is installed on the Carrier Board.	3/9

 Table 40:
 phyCORE-AM335x Carrier Board push button descriptions

PCM-953/ phyCORE-AM335x Carrier Board

Figure 13: S5 Switch location

Additionally a DIP switch is available at S5. The DIP switch provides a way to override the booting device order of the AM335x which is defined by a resistor network on the phyCORE-AM335x. The default booting device order is 1st: NAND, 2nd: NANDI2C, 3rd: MMCO, 4th: UARTO (refer to *Section 5* for more information).

DIP switch S5 on the Carrier Board is shown in *Figure 13*.

Setting switch S5_1 to ON enables switches S5_2 - S5_7 to control the SOM's SYSBOOT[6, 4:0] signals until the AM335x latches these signals on the rising edge of the power-on reset signal, X_PORZ. SYSBOOT[4:0] determine the processor's boot order. SYSBOOT[6] selects between MII and RMII mode for the Ethernet1 interface.

Setting switch S5_1 to OFF disables switches S5_2 - S5_7. When the processor boots, the default boot configuration which is set with resistors on the SOM is followed (see *Table 41*).

phyCORE AM335x [PCM-051]

S5 Switch	Setting Description	Signal Name on phyCORE Connector
1	ON to enable switches 2-6	n.a.
2	SYSB00T0: 0N = 1, 0FF = 0	X_LCD_DO
3	SYSB00T1: 0N = 1, 0FF = 0	X_LCD_D1
4	SYSB00T2: 0N = 1, 0FF = 0	X_LCD_D2
5	SYSB00T3: 0N = 1, 0FF = 0	X_LCD_D3
6	SYSB00T4: 0N = 1, 0FF = 0	X_LCD_D4
7	SYSB00T6: 0N = 1, 0FF = 0	X_LCD_D6

Table 41: phyCORE-AM335x S5 Switch configuration

14.3.3 LEDs

Figure 14: Carrier Board LEDs

The phyCORE-AM335x Carrier Board is populated with numerous LEDs to indictate the status of various interfaces as well as the input power supply. *Figure 14* shows the location of the LEDs. Their functions are listed in *Table 42*.

LED	Label	Color	Description	
D2	Power	red	+5 VDC input power	4
D9	ECAT	green	EtherCAT interfaces are enabled	
D10	WIFI	green	WiFi interface is enabled	
D11	RGMII2	green	green Ethernet 2 interface is enabled	
D12	LCD	green LCD Display is enabled		
D13	ETH1	green	Ethernet 1 interface is enabled	
D14	LED1	green	User LED 1 / AM335x_GPI01_30	15.2
D15	LED2	yellow	User LED 2 / AM335x_GPI01_31	19.5

 Table 42:
 phyCORE-AM335x Carrier Board LED descriptions

Detailed descriptions of the assembled connectors, jumpers and switches can be found in the following sections.

14.3.4 Jumpers

The phyCORE Carrier Board comes pre-configured with several removable jumpers (JP) and 3 solder jumpers (J). The jumpers allow the user flexibility of configuring a limited number of features for development purposes. *Table 43* lists the jumpers, their default positions, and their functions in each position. *Figure 15* depicts the jumper pad numbering scheme for reference when altering jumper settings on the development board.

Figure 16 provides a detailed view of the phyCORE-AM335x Carrier Board jumpers and their default settings. In this diagram, a beveled edge indicates the location of pin 1.

Before making connections to peripheral connectors, consult the applicable sections in this manual for setting the associated jumpers.

Figure 15: Jumper Numbering Scheme

Table 43 provides a comprehensive list of all carrier board jumpers. The table provides only a concise summary of jumper descriptions. For a detailed description of each jumper see the applicable section listed in the right hand column of the table.

Note:

Jumpers not listed should not be changed as they are installed with regard to the configuration of the phyCORE-AM335x.

If manual modification of the solder jumpers is required, please ensure that the board as well as surrounding components and sockets remains undamaged while de-soldering. Overheating the board can cause the solder pads to loosen, rendering the board inoperable. If soldered components need to be removed, the use of a desoldering pump, desoldering braid, an infrared desoldering station, desoldering tweezers, hot air rework station or other desoldering method is strongly recommended. Follow the instructions carefully for whatever method of removal is used.

Figure 16: Carrier Board Jumper locations

The following conventions were used in the "Jumper" column of the jumper table (*Table 43*).

- J = solder jumpers
- JP or X = removable jumper

Jumper	Setting	Description	See Section	
JP1		Jumper JP1 disables the 3 VCC_3V3_3000mA supply from voltage regulator U24, for		
		when the system uses the other 3.3 V supply instead. Use with X29.	1442	
	open	The VCC_3V3_3000mA supply is enabled.	1 // //2	
	closed	The VCC_3V3_3000mA supply is disabled.		
JP2		Jumper JP2 connects the optional backup battery to the phyCORE-Connector.		
	1+2	The backup battery connects to the phyCORE	14.4.2	
	2+3	The backup battery does not connect to the phyCORE		
JP3	Jumpers JP3 and JP4 control inputs to a logic decoder which enables some of the interfaces on the carrier board. Jumper JP3 controls input A and Jumper JP4 controls input B of the decoder.			
	open	Decoder input A is HIGH.		
	1+2	Decoder input A follows GPI01_8.	14.3.5	
	2+3	Decoder input B is LOW.		
JP4	open	Decoder input A is HIGH.		
	1+2	Decoder input A follows GPI01_8.		
	2+3	Decoder input B is LOW.		
JP5		Jumper JP5 selects the Audio Codec's MICN input.		
	1+2	U20 WM8974 Audio Codec's MICN input connects to X14 MIC IN connector pin "T".	14.4.14	
	2+3	U20 WM8974 Audio Codec's MICN input connects to X14 MIC IN connector pin "R".		
JP6		Jumper JP6 selects the Audio Codec's MCLK input.		
	1+2	U20 WM8974 Audio Codec's MCLK input connects to oscillator OZ1.	14 4 14	
	2+3	U20 WM8974 Audio Codec's MCLK input connects to signal X_MCASP0_AHCLKX from the SOM.	14.4.14	
JP7 and JP8		Jumpers JP7 and JP8 connect the UART1_Tx/Rx signals to the Wifi, CAN or Profibus connector.	14.4.5/	
	1+2	UART1_Tx/Rx connects to the WiFi connector.	14.4.7/	
	3+4	UART1_Tx/Rx connects to the CAN connector.	14.4.15	
	5+6	UART1_Tx/Rx connects to the Profibus connector.		
JP9		Jumper JP9 connects a differential termination across the CAN signals.		
	open	CAN differential termination at connector X13 is disconnected.	14.4.7	
	closed	CAN differential termination at connector X13 is connected.		
JP10		Jumper JP10 selects the amount of capacitance on the USB0_VBUS line. JP10 should be set for 4.7 uF (OPEN) when Jumper JP12 is OPEN, for OTG mode. JP10 should be set for 155 uF (CLOSED) when Jumper JP12 is CLOSED, for host mode.	14.4.8.1	
	open	USB0_VBUS signal has specified capacitance for OTG mode.		
	closed	USB0_VBUS signal has specified capacitance for host mode.		
JP11		Jumper JP11 sets the USB1 ID pin for host mode or OTG mode.		
	open	USB1_ID is configured for OTG mode.	14.4.8.2	
	closed	USB1_ID is configured for host mode.		
JP12		Jumper JP12 sets the USBO ID pin for host mode or OTG mode. Use Jumper JP12 together with Jumper JP10.	1//01	
	open	USB0_ID is configured for OTG mode.	14.4.0.1	
	closed	USB0_ID is configured for host mode.		
JP13		Jumper JP13 selects the logic input of the WM8974 (U20) Audio Codec's CSB/GPIO pin as HIGH or LOW. This pin's function is configurable with registers in the WM8974.	16616	
	open	U20 WM8974 Audio Codec's CSB/GPIO pin is HIGH.	14.4.14	
	closed	U20 WM8974 Audio Codec's CSB/GPIO pin is LOW.		
JP17		Jumper JP17 connects the SPI0 interface chip select 0 to the PDI connector. This is to support displays which use a SPI communication interface. The display which comes with the PHYTEC kit does not use SPI.	14 4 12 1	
	open	The LCD display is not accessible via SPIO.	± ,. T. ± £ 1	
	closed	The LCD display is accessible via SPIO at device 0 (if the display includes a SPI interface).		

 Table 43:
 phyCORE-AM335x Carrier Board Jumper description¹²

phyCORE AM335x [PCM-051]

Jumper	Setting	Description	See Section
JP18		Jumper JP18 connects X_GPI03_7 to user button 1 (S8), enabling the AM335x to read	
		the button's state.	1432
	open	Button 1 (S8) is not connected to X_GPI03_7.	1 1.3.2
7040	closed	Button 1 (S8) is connected to X_GPI03_7.	
JP19		Jumper JP19 connects X_GPI03_8 to user button 2 (S9), enabling the AM335x to read the button's state.	1/ 2 2
	open	Button 2 (S9) is not connected to X_GPIO3_8.	14.J.L
	closed	Button 2 (S9) is connected to X_GPIO3_8.	
JP20		Jumpers JP20 and JP21 connects the power pins of the Profibus connector (X19) to the carrier board's +5 V supply and to GND. This is to provide +5 V to the Profibus interface. If the Profibus interface already has +5 V supplied, then the carrier board's 5 V supply should not connect to it. The Profibus signals will translate into the carrier board's power domain through the RS-485 transceiver at U13.	
	open	The power pin of the Profibus connector does not connect to the carrier board's +5 V supply.	14.4.5
	closed	The power pin of the Profibus connector connects to the carrier board's +5 V supply.	
JP21	open	The GND pin of the Profibus connector does not connect to the carrier board's ground (GND).	
	closed	The GND pin of the Profibus connector connects to the carrier board's ground (GND).	
JP22		Jumper JP22 enables the write-protect function of the SPI Flash if the SOM is configured to use the SPI write-protect signal from the carrier board to control this	
		func- tion, so if Jumper J4 on the SOM is installed at (1+2).	6.2.3
	open	SPI Flash on SOM is not write-protected.	
	closed	The SPI Flash on the SOM is write-protected.	
JP23		Jumper JP23 connects the interrupt from the SOM's external RTC, X_INT_RTCn to the AM335x interrupt1 input, X_INTR1.	
	open	The SOM's external RTC interrupt signal does not connect to the AM335x interrupt1 input.	4.4
	closed	The SOM's external RTC interrupt signal connects to the AM335x interrupt1 input.	
JP24		Jumper JP24 connects the shutdown input of the FLATLINK™ transmitter at U3 to reset or GND.	
	1+2	The X_RESET_OUTn signal of the phyCORE-AM335x shuts down the FLATLINK™ transmitter to avoid bad display signals during reset.	14.4.12.1
	2+3	The Shutdown input of the FLATLINK [™] transmitter is connected to GND in order to disable the device.	
X29		Jumpers on X29 select the source for the VCC_3V3 supply from one of two voltage regulators on the carrier board. If VCC_3V3_800mA is selected, disable VCC_3V3_3000mA by installing JP1.	14.4.2
	1+2/3+4	VCC_3V3 is supplied by VCC_3V3_800mA.	
	5+6/7+8	VCC_3V3 is supplied by VCC_3V3_3000mA.	
J1		Jumpers J1 and J2 configure the connection of the AM335x AIN1 and AIN2 signals to two of the analog touch-screen interface signals.	
	1+2	The touch screen TOUCH_Y+ signal connects to AIN2.	1// 12
	2+3	The touch screen TOUCH_Y+ connects to AIN1.	14.4.12
J2	1+2	The touch screen TOUCH_X- connects to AIN1.	
	2+3	The touch screen TOUCH_X- connects to AIN2.	
J3		Jumper J3 selects which clock edge clocks the display data into the LVDS transmitter U3.	
	1+2	The falling clock edge clocks the display data.	14.4.12.1
	2+3	The rising clock edge clocks the display data.	

 Table 43:
 phyCORE-AM335x Carrier Board Jumper description¹²

^{12:} Defaults are in **bold blue** text

14.3.5 phyCORE-AM335x Carrier Board Bus Enable Decoder

The Carrier Board includes support for several interfaces which share some pins on the AM335x processor, so they are not all available from the processor at the same time. Several bus switches were added to the carrier board to optimize the routing of these interfaces. The interfaces on the Carrier Board which are enabled through these bus switches are:

- 1. Ethernet1
- 2. Ethernet2
- 3. EtherCAT
- 4. LCD Display
- 5. WiFi

The enable signals for these interfaces are controlled by a logic decoder. The decoder disables all of the interfaces during system power-on reset while the X_PORZ signal is asserted. After the reset, the decoder asserts the interface enable signals to the busswitches and to status LEDs according to the settings of jumpers JP3 and JP4.

Jumpers JP3 and JP4 and the LED locations are shown in *Figure 17*. The jumper settings are explained in *Table 44*.

Figure 17: Bus Enable Jumpers and LED

JP4 Signal (logic input B)	JP3 Signal (logic input A)	Enable Signals Activated	Enabled Interfaces
1+2	1+2	-	Interfaces can be selected by software via GPIOs X_GPIO1_8 (logic input A) and X_GPIO1_9 (logic input A)
2+2 (logic low)	2+2 (logic low)	CHOOSE_ECAT_OE	EtherCAT
2+5 (logic low)	2+3 (logic low)	CHOOSE_ETH1_OE	Ethernet1
212 (logic low)	OPEN	CHOOSE_LCD_OE	LCD
2+3 (logic low)	(logic high)	CHOOSE_WIFI_OE	WiFi
ODEN		CHOOSE_ETH1_OE	Ethernet1
UPEN (logic high)	2+3 (logic low)	CHOOSE_GMII_OE	Ethernet2
(logic iligii)		CHOOSE_CLD_OE	LCD
OPEN	OPEN	CHOOSE_ETH1_OE	Ethernet1
(logic high)	(logic high)	CHOOSE_LCD_OE	LCD

Table 44:Interfaces Enabled with JP3 and JP4

The LEDs in *Table 45* indicate which of the interfaces are enabled.

LED	Enabled Interfaces
D9	EtherCAT
D10	WiFi
D11	Ehternet2
D12	LCD Display
D13	Ehternet1

 Table 45:
 Bus Switch Enable Status LEDs

14.4 phyCORE-AM335x Carrier Board Functional Components

This section describes the functional components of the phyCORE-AM335x Carrier Board supporting the phyCORE-AM335x. Each subsection details a particular connector/interface and associated jumpers for configuring the interface.

14.4.1 phyCORE-AM335x SOM Connectivity (X1, X2)

Connectors X1 and X2 on the carrier board provide the phyCORE System on Module connectivity. The connectors are keyed for proper insertion of the SOM. *Figure 18* above shows the location of the connectors X1 and X2, along with the pin numbering scheme as described in *Figure 4*. Please refer to *Section 12* for information on manufacturer, part number, and ordering.

Figure 18: phyCORE-AM335x SOM Connectivity to Carrier Board

phyCORE AM335x [PCM-051]

To support all features of the phyCORE-AM335x Carrier Board the BSP provided assigns functions different from what is described in *Table 3* to some pins of the phyCORE-AM335x. *Table 46* lists all pins with functions different from what is described in *Table 3*. Use of these pins in their original function described in *Section 1* of this manual requires changing the BSP.

Pin # at phyCORE- Connector	Signal	Type (from the SOM perspective)	Signal Level	Description
X2B51	X_GPI01_8	OUT	3.3 V	If jumper JP3 is installed at (1+2), then X_GPI01_8 controls input A of the bus- enable decoder. See <i>14.3.5.</i>
X2B50	X_GPI01_9	OUT	3.3 V	If jumper JP4 is installed at (1+2), then X_GPI01_9 controls input B of the bus- enable decoder. See <i>14.3.5</i> .
X2A23	X_GPI03_17	IN	3.3 V	X_GPIO3_17 is used for over-current detection for the USBO interface. See <i>14.4.8.1</i> .
X1B5	X_GPI03_18	IN	3.3 V	X_GPIO3_18 is used for over-current detection for the USB1 interface. See <i>14.4.8.2.</i>
X1B15	X_GPI03_19	OUT	3.3 V	X_GPI03_19 controls the drive-enable (DE) input of the RS-485 transceiver (U13) for the Profibus interface. See <i>14.4.5</i> .
X1B47	X_GPI01_30	OUT	3.3 V	X_GPI01_30 controls LED1. LED1 is on when X_GPI01_30 is high. See <i>14.3.3.</i>
X1B48	X_GPI01_31	OUT	3.3 V	X_GPI01_31 controls LED2. LED2 is on when X_GPI01_31 is high. See <i>14.3.3.</i> On the SOM, X_GPI01_31 controls which signal routes to AM335x pin T17. 0=X_RMII2_CRS_DV. 1=NAND Ready/ Busy.

<i>Table 46:</i>	Specifically used Pins on the phyCORE Connector
------------------	---

14.4.2 Power

Figure 19: +5 VDC Power Input Connector

The primary input power of the phyCORE-AM335x Carrier Board comes from the wall adapter jack X3 (+5 V). The red LED, D2, on the Carrier Board lights when the main supply voltage from the wall adapter, VCC_5VO, is on.

Switching regulators on the phyCORE-AM335x Carrier Board generate two different voltages(1.2 V and 3.3 V) to supply components on the carrier board.

The carrier board's 1.2 V and 3.3 V local power supplies are enabled by the VAUX2_3P3V reference voltage from the SOM rather than powering up immediately with the VCC_5V0 main system supply. This is to prevent the carrier board from driving signals into the AM335x processor while the SOM's power supplies are off.

There are two options for supplying the VCC_3V3 domain. These are:

- 1. VCC_3V3_800mA, from U15
- 2. VCC_3V3_3000mA, from U24

Select the supply for VCC_3V3 at connector X29 as shown in *Table 47*.

phyCORE AM335x [PCM-051]

Either the 800 mA supply or the 3000 mA supply can run the carrier board interfaces. The 3000 mA option is provided in order to also supply possible future circuits on the GPI0 Expansion Board. If it is not used, U24 should be shut off by installing jumper JP1. The settings for selecting the 3.3 V source with X29 and JP1 are described in *Table 47*.

VCC_3V3 source	JP1 Setting	X29 Setting
VCC_3V3_800mA, U15	(1+2)	(1+2) and (3+4)
VCC_3V3_3000mA, U24	OPEN	(5+6) and (7+8)

Table 47:VCC_3V3 Jumper Settings

Table 48 lists the Carrier Board's voltage domains and their uses.

Voltage Domain	Description
VCC_5V0	Main supply voltage from wall adapter input at X3. VCC_5V0 powers the SOM, the other supplies
	on the carrier board, and also various interfaces which use 5 V, such as USB and Profibus.
VCC_3V3	3.3 V voltage domain required for various interfaces such as the LCD transceiver, Ethernet
	ports, etc.
VCC_1V2	1.2 V voltage domain required for the Ethernet2 transceiver, U14.
VBAT	3 V backup battery supplying the RTC on the SOM if jumper JP2 is installed.

Table 48:Carrier Board Voltage Domains

Caution!

Only one 3.3 V power supply (either 800mA or 3000mA) can be enabled at one time.

14.4.2.1 Wall Adapter Input (X3)

Caution!

Do not use a laboratory adapter to supply power to the carrier board! Power spikes during power-on could destroy the phyCORE module mounted on the carrier board! Do not change modules or jumper settings while the carrier board is supplied with power!

Permissible input voltage at X3: +5 V DC.

The required current load capacity of the power supply depends on the specific configuration of the phyCORE mounted on the carrier board, the particular interfaces enabled while executing software as well as whether an optional expansion board is connected to the carrier board. An adapter with a minimum supply of 1.5A is recommended.

Note:

For powering up the phyCORE, the following actions have to be done:

- Plug in the power supply connector.
- The red power LED D2 should light up and the phyCORE sends serial data from UARTO to the DB9 connector X18.

14.4.2.2 Power Management

Two signals on the phyCORE-AM335x Carrier Board support the features of the Power Management IC on the phyCORE-AM335x. They connect to pins X3.B14 (X_PB_POWER) and X1.B25 (X_PMIC_POWER_EN) at the phyCORE-Connector. Please refer to *Section 4.3.3* to learn more about the power management available on the phyCORE-AM335x.

Signal X_PB_POWER connects to switch S7 on the carrier board. Pressing this switch toggles the X_PB_POWER signal of the PMIC LOW.¹³

Signal X_PMIC_POWER_EN connects to switch S1 on the carrier board. Setting this switch ON or OFF sets the X_PMIC_POWER_EN signal HIGH or LOW.

14.4.2.3 VBAT

To backup the RTC on the module, a secondary voltage source of 3 V can be attached to the phyCORE-AM335x at pin X2A2. This voltage source supplies the backup voltage domain VBAT of the AM335x which supplies the RTC and some critical registers when the primary system power, VDD_3V3, is removed.

Install jumper JP2 at (1+2) to connect the VBAT supply to the phyCORE-AM335x.

14.4.3 Ethernet Connectivity

The carrier board's bus enable decoder must be configured with jumpers JP3 and JP4 to enable the Ethernet interfaces. See *Table 49* for information on setting the jumpers. LED D13 is lit when the Ethernet1 interface is enabled and LED D11 is lit with Ethernet2.

JP4 Signal (logic input B)	JP3 Signal (logic input A)	Enabled Interfaces		
1+2	1+2	Selected by software, see Section 14.3.5 for detailed information.		
2+3 (logic low)	2+3 (logic low)	EtherCAT / Ethernet1		
2+3 (logic low)	OPEN (logic high)	LCD WiFi		
OPEN (logic high)	2+3 (logic low)	Ethernet1 / Ethernet2 / LCD		
OPEN (logic high)	OPEN (logic high)	Ethernet1 / LCD		

Table 49:Ethernet Connectivity - JP3 and JP4 settings

^{13:} All special functions of the PMIC, such as its response to this power management input signal, etc. require the PMIC to be programmed via I²C interface. At the time of delivery, only the generation of the required voltages is implemented . Please refer to the TPS65910A3 User Guide for more information on how to program the PMIC.

14.4.3.1 Ethernet1 (X12)

Figure 20: Ethernet1 Connector

The Ethernet1 interface of the phyCORE is accessible at an RJ-45 connector (X12) on the carrier board. The LEDs for LINK (green) and SPEED (yellow) indication are integrated in the connector. The required termination resistors for the Ethernet interface are assembled on the phyCORE-AM335x.

This Ethernet transceiver on the SOM supports the HP Auto-MDIX function, eliminating the need for considerations of a direct connect LAN or a cross-over patch cable. The transceiver detects the TX and RX signals of the connected device and automatically configures its TX and RX pins accordingly.

Note:

Ensure the routing distance between the phyCORE-Connector and the Ethernet connector is as short as possible

Caution!

Ethernet1 cannot be used at the same time as WiFi.

14.4.3.2 Ethernet2 (X9)

Figure 21: Ethernet2 Connector

The Ethernet2 interface of the phyCORE is accessible at an RJ-45 connector (X9) on the carrier board. The LEDs for LINK (green) and SPEED (yellow) indication are integrated in the connector.

The single-ended Ethernet 2 RGMII signals from the AM335x route through the phyCORE-Connector to an RGMII Ethernet transceiver at U14. The differential pairs from the transceiver route through a gigabit magnetics module to the RJ-45 Ethernet jack.

14.4.4 EtherCAT (X10 and X11)

Figure 22: EtherCAT Connector

The EtherCAT interfaces of the phyCORE are accessible at RJ-45 Ethernet jacks with integrated magnetics (X10 and X11) on the carrier board. The LEDs for LINK (green) and SPEED (yellow) indication are integrated in the connectors.

The single-ended MII EtherCAT signals from the AM335x route through the phyCORE-Connector to two EtherCAT transceivers (U33 and U34). The differential pairs from the transceivers route to the two RJ-45 Ethernet jacks.

The carrier board's bus enable decoder must be configured with jumpers JP3 and JP4 to enable the EtherCAT interface. See *Table 50* for information on setting the jumpers. LED D9 is lit when the EtherCAT interface is enabled.

JP4 Signal (logic input B)	JP3 Signal (logic input A)	Enabled Interfaces	
1+2	1+2	Selected by software, see Section 14.3.5 for detailed information.	
2+3 (logic low)	2+3 (logic low)	EtherCAT / Ethernet1	
2+3 (logic low)	OPEN (logic high)	LCD / WiFi	
OPEN (logic high)	2+3 (logic low)	Ethernet1 / Ethernet2 / LCD	
OPEN (logic high)	OPEN (logic high)	Ethernet1 / LCD	

Table 50:EtherCAT - JP3 and JP4 settings

14.4.5 Profibus (X19)

Figure 23: Profibus Connector

The Profibus interface is accessible at the DB9 connector X19.

The Carrier Board uses the AM335x UART1_TXD/RXD pins for the Profibus interface. These signals route from the phyCORE connector through jumpers JP7 and JP8 to a RS-485 transceiver at U13. The signals out of the transceiver route to the DB9 connector. See *Table 51* for information on setting the jumpers.

Because the Profibus interface shares some signals with the WiFi module, the carrier board was designed so that installing the WiFi module onto the carrier board disables the Profibus transceiver.

Jumper	Setting to enable Profibus
JP7	5+6
JP8	5+6

Table 51:Profibus Jumpers

14.4.6 RS-232 (X18)

Figure 24: RS-232 Connector

The DB-9 connector X18 provides the UARTO signals of the AM335x at RS-232 level. A RS-232 transceiver at U28 converts the TTL level signals from the phyCORE-AM335x to RS-232 level signals. The AM335x can boot from this interface.

This interface does not include the AM335x's UARTO_ RTS and UARTO_CTS signals for flow control.

14.4.7 CAN (X13)

Figure 25: CAN Connector and Jumpers

The CAN interface is accessible at the DB9 connector X13.

The PHYTEC carrier board provides access to the CANO signals which are multiplexed onto the AM335x UART1_TX and UART1_RX pins. These signals route from the phyCORE-Connector through jumpers JP7 and JP8 to a CAN transceiver at U23. The signals out of the transceiver route to X13.

The CAN signals on the carrier board share the UART1_TX/RX signals with the Profibus inteface and with the WiFi module. Jumpers JP7 and JP8 must be installed at pins (1+2) to select CAN rather than Profibus. If a WiFi module is installed at connector X27, then both the CAN and Profibus transceivers are disabled.

Jumper JP9 can be installed to add a 120 Ohm termination resistor across the CAN data lines if needed.

14.4.8 Universal Serial Bus (USB) (X7, X8)

Figure 26: USB Connectors and Jumpers

The USB interfaces are accessible at connectors X7 (USB Mini-AB) and X8 (USB Standard-A). Both USB interfaces of the AM335x are On-The-Go (OTG). USB OTG devices are capable of initiating a session, controlling the connection, and exchanging host and peripheral roles between each other. The AM335x USB interfaces are compliant with USB revision 2.0.

14.4.8.1 USB0 (X7)

Two jumpers control the configuration of the USB0 OTG interface.

Jumper J12 configures the interface's operating mode with the USBO_ID signal. By default this jumper is open, which leaves the ID pin floating and configures the interface mode as OTG. Alternatively this jumper can be closed, connecting the ID signal to GND and configuring the interface mode as host.

Typically the configuration of a connecting device as host or slave is done automatically via the USB cable. However, given the limited number of OTG enabled devices in the embedded market, this jumper is provided to either simulate an OTG cable or force the OTG interface into host mode when OTG operation is not required.

Jumper J10 connects the bus voltage signal (X_USB0_VBUS) to an additional 150 uF of capacitance. This is to meet the capacitance requirements when the interface is used in dedicated host mode (see *Table 52*).

14.4.8.2 USB1 (X8)

One jumper controls the configuration of the USB1 OTG interface.

The USB1 interface of the AM335x is an OTG interface. Its default configuration on the the carrier board is as a dedicated host.

Jumper J11 connects the ID signal (X_USB1_ID) to GND. By default, the jumper is closed which configures the interface mode as a host. Alternatively, this jumper can be open, leaving the ID signal floating and configuring the interface mode as OTG.

The carrier board's USB1 interface always has 150 uF on its bus voltage (X_USB1_VBUS). This amount of capacitance is appropriate for its default configuration as a USB host. It is above the capacitance specification for an OTG interface.

Table 52 details the applicable connectors for the different USB operating modes.

Note:

- The AM335x ID signals are in a 1.8 V power-domain. Steady state voltages above 2.1 V on the ID signals can cause permanent damage to the AM335x. Any pull-ups on the USB_ID signals should connect to 1.8 V. Please see the PHYTEC Carrier Board schematics for a reference implementation.
- A USB interface is required to supply 8 mA of current at 5 V to a connecting device on the port's bus voltage (VBUS) signal when it runs in host mode.
- The phyCORE-AM335x VBUS pin is not capable of supplying bus voltage. However, the phyCORE-AM335x does provide a control signal for enabling a power distribution switch to supply the bus voltage for each USB interface. These control signals are named X_USB0_DRVVBUS and X_USB1_DRVVBUS in the phyCORE-AM335x carrier board schematics. Please see the phyCORE-AM335x Carrier Board schematics for a reference circuit.

Operating Mode	Applicable Connectors	ID Signal on Carrier Board	VBUS Capacitance
Host	Standard-A	grounded	at least 120 uF
	Mini-A	grounded	
Device / Peripheral	Standard-B	floating	1 uF - 10 uF
	Mini-B	floating	
OTG	Mini-AB	floating, the USB cable may ground it	1 uF - 10 uF

Table J2, 0JD CONTECLOIS TO DITECTIL Operating modes	<i>Table 52:</i>	USB Connectors	for Different (Derating Modes
--	------------------	----------------	-----------------	-----------------------

14.4.9 I²C

The I²C interfaces of the phyCORE-AM335x are available on several signals of the phyCORE-AM335x Carrier Board. *Table 53* lists the I²C interfaces, signals these can be multiplexed onto, the signal level, and where they are located on the GPIO Expansion Board connector X5.

I ² C Interface	Interface Signal	Schematic Signal Name	Signal Level	Connector X5 pin
1200	SCL	X_I2C0_SCL	3.3 V	35C /
1200	SDA	X_I2CO_SDA	3.3 V	36C
		X_SPIO_CSO	3.3 V	39C
	SCI	X_UARTO_RTSn	3.3 V	-
	SUL	X_UART1_TXD	3.3 V	37X
1001		X_RMII1_RXER	3.3 V	-
1201	SDA	X_SPIO_D1	3.3 V	41C
		X_UARTO_CTSn	3.3 V	-
		X_UART1_RXD	3.3 V	38D
		X_MII1_CRS	3.3 V	-
		X_SPIO_DO	3.3 V	40C
	SCL	X_UARTO_TXD	3.3 V	40D
1000		X_UART1_RTS	3.3 V	36D
1202		X_SPIO_SCLK	3.3 V	38C
	SDA	X_UARTO_RXD	3.3 V	41D
		X_UART1_CTS	3.3 V	35D

Table 53:I² C Interface Signals

To avoid any conflicts when connecting external I^2C devices to the phyCORE-AM335x Carrier Board the addresses of the on-board I^2C devices must be considered. Some of the addresses can be configured. Table 54 lists the addresses already in use by default on the PHYTEC kit. These addresses are all on the I2CO interface.

I2C0 Address (7 MSB)	Device	Device Location	Section
0x12	TPS65910A3 PMIC (U4) SmartReflex (SR-I ² C) control interface	SOM	4.3
0x2D	TPS65910A3 PMIC (U4) general-purpose serial control (CTL-I ² C) interface	SOM	4.3
0x52	I ² C EEPROM (U6). This address can be modified	SOM	6.2.2.1
0x68	External Real-Time Clock (U2). This RTC is an ordering option, not installed by default	SOM	4.4.2
0x1A	WM8974 Audio Codec (U20).	Carrier Board	14.4.14

Table 54:I2C0 Reserved Addresses

14.4.10 SPI (X5)

Figure 27: X5 GPIO Expansion Board Connectors

The two SPI interfaces from the AM335x are accessible on the phyCORE-Connectors. They are both master/slave interfaces. Each SPI interface supports up to two peripherals.

The SPIO chip select 0 (X_SPIO_CSO) is not available for use on the GPIO Expansion Board if the SPI Flash is installed on the SOM unless the SPI Flash is disabled. The SPI Flash on the SOM can be disabled without physically removing it by installing jumper J3 on the SOM. See *Section 6.2.2.2*.

The SPI signals available on the GPIO Expansion Board are listed in *Table 69*.

14.4.11 JTAG (X21)

Figure 28: JTAG Connector

The JTAG interface of the phyCORE-AM335x is accessible at connector X21 on the carrier board. This interface is compliant with JTAG specification IEEE 1149.1 or IEEE 1149.7. No jumper settings are necessary to use the JTAG port. *Table 55* describes the signal configuration at X21. When referencing contact numbers note that pin 1 is located at the angled corner. Pins towards the label "JTAG" are odd-numbered.

Pin #	Signal	Туре	Signal Level	Description
1,2	VCC_3V3	REF	3.3 V	JTAG Chain Reference Voltage
3	X_TRSTn	IN	3.3 V	JTAG Chain Test Reset
4, 6, 8, 10, 12, 14, 18, 20	GND	-	-	Ground
5	X_TDI	IN	3.3 V	JTAG Chain Test Data Input
7	X_TMS	IN	3.3 V	JTAG Chain Test Mode Select signal
9	X_TCK	IN	3.3 V	JTAG Chain Test Clock signal
11	X_RTCK	0UT	3.3 V	JTAG Chain Return Test Clock signal
13	X_TD0	OUT	3.3 V	JTAG Chain Test Data Output
15	X_SRST	IN	3.3 V	System Reset

Table 55:JTAG Connector X1 Pin Descriptions

14.4.12 LCD Display / Touch Screen (X4, X31)

Figure 29: Display Connectors

The phyCORE-AM335x Carrier Board supports the LCD interface display and touch screen interfaces provided by the phyCORE-AM335x. The LCD interface display signals are converted into LVDS and are available at the PHYTEC Display Interface (PDI) (data connector X4) along with the touch signals. In addition, the parallel display interface is available at pin header X40.

The PHYTEC Carrier Board swaps some of the display data signals from the SOM before connecting them to the display interface to work around an errata in the AM335x processor.

The various performance classes of the phyCORE family enable attaching a large number of different displays varying in resolution, signal level, type of the backlight, pinout, etc. In order not to limit the range of connectable displays to the phyCORE, the phyCORE-AM335x Carrier Board has no special display connector suitable for only a small number of displays. The new concept provides for the use of an adapter board (PHYTECs LCD display adapters LCD-014 and LCD-017) to attach a special display or display family to the phyCORE. A new PHYTEC Display-Interface (PDI) was defined to connect the adapter board to the phyCORE-AM335x Carrier Board. It consists of two universal connectors which provide the connectivity for the display adapter. They allow for easy adaption to any customer display

phyCORE AM335x [PCM-051]

adapter as well. One connector (40 pin FCC connector 0.5mm pitch) at X4 is intended to connect all data signals to the display adapter. It combines various interface signals (LVDS, SPI, I2C, etc.) required to hook up a display. The second connector of the PDI (AMP microMatch 8-338069-2) at X31 provides all supply voltages needed to supply the display and the brightness control.

The carrier board's bus enable decoder must be configured with jumpers JP3 and JP4 to enable the Ethernet 1 interface. See *Table 56* for information on setting the jumpers. LED D12 is lit when the display interface is enabled.

JP4 Signal (logic input B)	JP3 Signal (logic input A)	Enabled Interfaces
1+2	1+2	Selected by software, see Section 14.3.5 for detailed information
2+3 (logic low)	2+3 (logic low)	EtherCAT / Ethernet1
2+3 (logic low)	OPEN (logic high)	LCD / WiFi
OPEN (logic high)	2+3 (logic low)	Ethernet1 / Ethernet2 / LCD
OPEN (logic high)	OPEN (logic high)	Ethernet1 / LCD

Table 56:Display Connectors - JP3 and JP4 settings

14.4.12.1 PHYTEC Display Interface (PDI) Data Connector (X4)

PDI data connector X4 provides display data from the LCD Interface Display Driver of the AM335x after the signals have been converted to LVDS.

The LCD interface display signals are converted into LVDS by the Texas Instruments SN65LVDS93 FlatLink[™] transmitter at U3. The transmitter contains four 7-bit parallel-load, serial-out shift registers with LVDS output drivers. Jumper J3 enables selecting either rising or falling edge strobe for the input clock signal of the FlatLink[™] transmitter. The default configuration selects rising edge strobe (see *Table 43* for details). Removing jumper JP1 enables the transmitter.

The AM335x LCD interface display signals are also available at pin header X40 to enable design of a custom specific display interface. Please refer to *Section 14.4.12.3*.

Note:

- If the LCD interface of the phyCORE-AM335x is intended to be used with custom hardware connected to pin header X40, closing the jumper JP24 at position 2+3 shuts down the FlatLink[™] transmitter. This avoids signal conflicts and reduces disturbances.
- On custom carrier boards, PHYTEC strongly recommends including 50 Ohm series resistors on each of the LCD interface signals out of the phyCORE-AM335x to limit overshoot.

In addition other useful interfaces such as SPI and I^2C are available at PDI data connector X4. *Table 58* lists the miscellaneous signals available on the AM335x Carrier Board PDI connector and gives detailed explanations.

Table 57 shows the pinout of the PDI's display data connector at X4.

Pin #	Signal	Туре	Signal Level	Description
1	X_SPIO_SCLK	OUT	3.3 V	SPI 0 clock
2	X_SPIO_DO	IN	3.3 V	SPI 0 master data in; slave data out
3	X_SPIO_D1	OUT	3.3 V	SPI 0 master data out; slave data in
4	X_SPIO_CSO	OUT	3.3 V	SPI 0 chip select display adapter
5	X_INTR1	IN	3.3 V	Interrupt
6	VCC_3V3	OUT	3.3 V	Logic supply voltage ¹⁴
7	X_I2CO_SCL	IO	3.3 V	I ² C clock signal
8	X_I2CO_SDA	IO	3.3 V	I ² C data signal
9	GND	-	-	Ground
10	X_ECAPO_IN_PWMO_OUT	OUT	3.3 V	PWM brightness control
11	VCC_3V3	OUT	3.3 V	Logic supply voltage ¹⁴
12	n.c.	-	-	not connected
13	CH00SE_LCD_0En	OUT	3.3 V	Display enable signal
14	n.c.	-	-	not connected
15	GND	-	-	Ground
16	n.c.	-	-	not connected
17	n.c.	-	-	not connected
18	GND	-	-	Ground
19	LVDS_Y1M	LVDS	3.3 V	LVDS data channel 0 negative output
20	LVDS_Y1P	LVDS	3.3 V	LVDS data channel 0 positive output
21	GND	-	-	Ground
22	LVDS_Y2M	LVDS	3.3 V	LVDS data channel 1 negative output
23	LVDS_Y2P	LVDS	3.3 V	LVDS data channel 1 positive output
24	GND	-	-	Ground
25	LVDS_Y3M	LVDS	3.3 V	LVDS data channel 2 negative output
26	LVDS_Y3P	LVDS	3.3 V	LVDS data channel 2 positive output
27	GND	-	-	Ground
28	LVDS_Y4M	LVDS	3.3 V	LVDS data channel 3 negative output
29	LVDS_Y4P	LVDS	3.3 V	LVDS data channel 3 positive output
30	GND	-	-	Ground
31	LVDS_CLKOUTM	LVDS	3.3 V	LVDS clock channel negative output
32	LVDS_CLKOUTP	LVDS	3.3 V	LVDS clock channel positive output
33	GND	-	-	Ground
34	TOUCH_X+	Analog	3.3 V	Touch
35	TOUCH_X-	Analog	3.3 V	Touch
36	TOUCH_Y+	Analog	3.3 V	Touch
37	TOUCH_Y-	Analog	3.3 V	Touch
38	n.c.	-	-	not connected
39	GND	-	-	Ground
40	n.c.	-	-	not connected

Table 57: PDI Data Connector X4 Signal Description

^{14:} Provided to supply any logic on the display adapter.

Table 58 describes the auxiliary interfaces at display data connector X4.

Interface or Signal	Description
I2C0	I ² C interface for a optional EEPROM, or other I ² C devices. Additional information on the I ² C interfaces can be found in <i>Section 8.1.5</i> .
SPIO	SPI interface to connect optional SPI slave. Jumper JP17 must be closed to use the SPI interface, which is addressable at SPI0 device 0. The LCD from PHYTEC does not include a SPI interface.
CHOOSE_LCD_OEn	Can be used to enable or disable the display. CHOOSE_LCD_OEn is driven by a logic decoder which is controlled with jumpers JP3 and JP4. See <i>Section 14.3.5.</i>
X_ECAPO_IN_PWMO_OUT	PWM output from the AM335x to control the brightness of a display's backlight (0% = dark, 100% = bright).
тоисн	Analog touch-screen interface signals. These TOUCH signals connect to the AIN[3:0] signals of the AM335x.

 Table 58:
 Auxiliary Interfaces at PDI Data Connector X4

14.4.12.2 PHYTEC Display Interface (PDI) Power Connector (X31)

The display power connector X31 (AMP microMatch 8-338069-2) provides supply voltages and brightness control.

Pin #	Signal	Туре	Signal Level	Description
1	GND	-	-	Ground
2	VCC_3V3	PWR	3.3 V	3.3 V power supply display
3	GND	-	-	Ground
4	VCC_5V	PWR	5.0 V	5 V power supply display
5	GND	-	-	Ground
6	VCC_5V	PWR	5.0 V	5 V power supply display
7	GND	-	-	Ground
8	VCC_5V	PWR	5.0 V	5 V power supply display
9	GND	-	-	Ground
10	X_ECAPO_IN_PWMO_OUT	OUT	3.3 V	PWM brightness output ¹⁵
11	n.c.	-	-	Not connected
12	n.c.	-	-	Not connected

 Table 59:
 PDI Power Connector X31 Signal Description

Caution!

There is no protective circuitry for the display power connector. The output for the display supply voltage connects directly to the main power input at X3. Therefore, the main supply voltage must match the input voltage of the backlight power circuitry.

^{15:} Refer to *Table 58* for detailed information.

14.4.12.3 AM335x LCD Interface Display (X40)

The AM335x LCD interface display signals are available at pin header X40 to enable design of a custom display interface. If using the interface at X40, disable the LVDS transmitter by installing jumper JP1.

Pin #	Signal	Pin #	Signal
1	LCD_D3	2	LCD_D10
3	LCD_D2	4	X_LCD_D17
5	LCD_D10	6	X_LCD_D23
7	LCD_DO	8	X_LCD_D20
9	X_LCD_D16	10	LCD_11
11	X_LCD_D18	12	LCD_D12
13	LCD_D4	14	LCD_D13
15	LCD_D5	16	LCD_D14
17	X_LCD_D6	18	LCD_D15
19	X_LCD_D7	20	X_LCD_HSYNC
21	LCD_D22	22	X_LCD_VSYNC
23	X_LCD_D19	24	LCD_AC_BIAS_EN
25	LCD_D8	26	X_LCD_D21
27	LCD_D9	28	LCD_PCLK
29	GND	30	VCC 3V3

Table 60:AM335x LCD Interface Display Connector X40

14.4.12.4 Touch Screen Connectivity

As many smaller applications need a touch screen user interface, provisions are made to connect 4-wire resistive touch screens to the PDI data connector X12 (pins 34 - 37, refer to *Table 57*). The signals from the touch screen panel are processed by a touch panel controller which is integrated in the AM335x.

14.4.13 Secure Digital Memory (SD / MultiMedia Card (MMC) (X20)

Figure 30: SD / MMC Connector (X20)

The phyCORE Carrier Board provides a standard Secure Digital Memory SDHC card slot at X20 to connect SD/MMC interface cards. It enables an easy and convenient connection to peripheral devices such as SD and MMC cards. Power to the SD interface is supplied by inserting the appropriate card into the SD/MMC connector.

The AM335x processor on the SOM can boot from this interface.
14.4.14 Audio (X14, X15, X16, X17)

Figure 31: Audio connectors (X14, X15, X16, X17)

The audio interface provides a method of exploring the AM335x's audio capabilities. The phyCORE-AM335x Carrier Board is populated with a Wolfson Microelectronics WM8974 audio codec at U20. The WM8974 is connected to the AM335x's McASPO interface to support stereo microphone input, stereo headphone output, mono output, and direct speaker output.

The phyCORE-AM335x accesses the WM8974 registers via the I2C0 interface at address 0x1A (7-bit MSB addressing). Audio devices can be connected at X14, X15, X16 and X17.

The carrier board's audio interface includes three hardware configuration jumpers: JP5, JP6 and JP13. These are described below. The audio connectors are listed in *Table 61*.

Jumper JP5 selects the source for the audio codec's microphone input from connector X14. The default configuration (1+2) connects the microphone input to X14's "R" signal. If JP5 is set to (2+3), then the microphone input connects to X14's "T" signal.

Jumper JP6 enables flexible control over the audio codec's master clock source (MCLK). The audio codec's master clock can range from 12.288 MHz to 50 MHz. In the default position (2+3), the codec is clocked from the module's X_MCASP0_AHCLKX clock signal. If

J6 is set to (1+2), the clock is generated by a crystal oscillator (12.2880 MHz) at OZ1 on the carrier board.

Jumper JP13 selects whether the audio codec's GPIO pin is HIGH or LOW. The codec's behavior for either level is configurable through registers in the WM8974 via I2CO.

Connector	Audio Feature
X14	microphone in
X15	headphones out
X16	mono out
X17	speakers out

Table 61:Audio Connectors

14.4.15 WiFi (X27)

Figure 32: WiFi Connector

A WiFi / Bluetooth module, such as the PHYTEC PCM-958, can connect to the Carrier Board's pin header at X27. The WiFi connector and associated jumpers are shown in *Figure 32*.

The Carrier Board's logic decoder must be configured with jumpers JP3 and JP4 to enable the WiFi interface signals. See *Section 14.3.5* for information about enabling different interfaces with the logic decoder. Jumpers JP7 and JP8 must also be installed at (1+2) to

connect the UART1_Tx/Rx signals to the WiFi connector.

The carrier board's bus enable decoder must be configured with jumpers JP3 and JP4 to enable the WiFi interface. See *Table 62* for information on setting the jumpers. LED D10 is lit when the WiFi interface is enabled.

JP4 Signal (logic input B)	JP3 Signal (logic input A)	Enabled Interfaces
1+2	1+2	Selected by software, see Section 14.3.5 for detailed information
2+3 (logic low)	2+3 (logic low)	EtherCAT / Ethernet1
2+3 (logic low)	OPEN (logic high)	LCD / WiFi
OPEN (logic high)	2+3 (logic low)	Ethernet1 / Ethernet2 / LCD
OPEN (logic high)	OPEN (logic high)	Ethernet1 / LCD

Table 62:WiFi - JP3 and JP4 setting

The WiFi module requires signals from several of the AM335x interfaces. The signals used for the WiFi module are listed in *Table 63*.

Pin #	Signal Type	Signal	Signal Level	Description
1		MCASP1_FSX	3.3 V	Audio frame
3	Audio	MCASP1_AXR0	3.3 V	Audio data
20	Audio	MCASP1_AXR2	3.3 V	Audio data
5		MCASP1_ACLKX	3.3 V	Audio clock
9		X_UART1_TXD	3.3 V	UART transmit data
22		X_UART1_RXD	3.3 V	UART receive data
24	UARI	X_UART1_CTS	3.3 V	UART clear to send
11		X_UART1_RTS	3.3 V	UART request to send
29		MMC2_DAT0	3.3 V	MMC data
27		MMC2_DAT1	3.3 V	MMC data
25		MMC2_DAT2	3.3 V	MMC data
21		MMC2_DAT3	3.3 V	MMC data
17		MMC2_DAT4	3.3 V	MMC data
13	SU/MMC	MMC2_DAT5	3.3 V	MMC data
19		MMC2_DAT6	3.3 V	MMC data
28		MMC2_DAT7	3.3 V	MMC data
32		MMC2_CLK	3.3 V	MMC clock
30		MMC2_CMD	3.3 V	MMC command
2	Module Detect	WIFI_DETECT	3.3 V	Low-true detect signal
10, 12, 14, 16		VCC_3V3	-	3.3 V supply
4, 6	Power	VDIG1_1P8V	-	1.8 V supply
7, 8, 15, 18, 23, 26, 31		GND	-	Ground

Table 63:WiFi Module Signals (X27)

WiFi shares the UART1 interface signals with the Profibus and CAN interfaces. When the WiFi module is installed, the Profibus and CAN transceivers are automatically disabled with the WiFi module detect signal.

15 PCM-957 GPIO Expansion Board

The GPIO Expansion Connectors at X5 on the Carrier Board provide access to many of the phyCORE-AM335x SOM signals.

As an accessory, a GPIO Expansion Board (part # PCM-957) is made available through PHYTEC to connect to the X5 GPIO Expansion Connectors. This expansion board provides a patch field for easy access to all of the signals and additional board space for testing and prototyping. A summary of the signal mapping between the phyCORE-Connectors and the patch field on the GPIO Expansion Board is provided in *Table 64* to *Table 69*

15.1 GPIO Expansion Board Analog Signals

SOM Pin #	Signal	GPIO Expansion Board Pin	Туре	Signal Level	Description
X3B38	X_AINO	13D	IO	1.8 V	analog input / TOUCH_X+
X3B37	X_AIN1	14D	IO	1.8 V	analog input / TOUCH_X-
X3B34	X_AIN2	16D	IO	1.8 V	analog input / TOUCH_Y+
X3B35	X_AIN3	17D	IO	1.8 V	analog input / TOUCH_Y-
X3B32	X_AIN4	19D	IO	1.8 V	analog input
X3B31	X_AIN5	20D	IO	1.8 V	analog input
X3B29	X_AIN6	22D	IO	1.8 V	analog input
X3B28	X_AIN7	23D	IO	1.8 V	analog input

The analog signals on the GPIO Expansion Board are shown in *Table 64*.

 Table 64:
 GPIO Expansion Board Analog Signal Map

15.2 GPIO Expansion Board Control Signals

The control signals on the GPIO Expansion Board are shown in *Table 65*.

SOM Pin #	Signal	GPIO Expansion Board Pin	Туре	Signal Level	Description
X3A5	X_AM335_NMIn	2C	IN	3.3 V	AM335x non-maskable interrupt
X3A11	X_PB_RESETn	3C	IN	3.3 V	Push-button reset
X3B13	X_RESET_OUTn	2D	OUT	3.3 V	Warm reset
X3B39	X_AM335x_EXT_WAKEUP	3D	IN	3.3 V	External wakeup
X1B15	X_INTR1	4D	IN	3.3 V	Interrupt 1
X1B1	X_SPI_WPn	6D	IN	3.3 V	SPI write-protect
X1B16	X_INT_RTCn	7D	IN	3.3 V	Interrupt from the external RTC
X1B25	X_PMIC_POWER_EN	8D	IN	3.3 V	PMIC power enable
X1B35	X_GPIO_CKSYNC	9D	IO	3.3 V	PMIC GPIO / clock-sync

 Table 65:
 GPIO Expansion Board Control Signal Map

15.3 GPIO Expansion Board GPIO Signals

The GPIO signals on the GPIO Expansion Board are shown in the Table 66.

SOM Pin #	Signal	GPIO Expansion Board Pin	Туре	Signal Level	Description
X1B5	X_GPI03_18	5B	10	3.3 V	Used for USB1 over-current detection
X3A23	X_GPI03_17	6B	10	3.3 V	Used for USB0 over-current detection
X1B18	X_GPI03_8	7B	I0	3.3 V	Used for User button 1
X1B20	X_GPI03_7	9B	I0	3.3 V	Used for User button 2
X1B48	X_GPI01_31	10B	I0	3.3 V	Used for User LED 2
X1B47	X_GPI01_30	11B	I0	3.3 V	Used for User LED 1
X1A3	X_RMII1_RXD0/_GPI02_21	13B	10	3.3 V	Available on the Expansion Board only when the logic decoder enables the WiFi interface
X1A4	X_RMII1_RXD1/_GPIO2_20	14B	10	3.3 V	Available on the Expansion Board only when the logic decoder enables the WiFi interface
X1A11	X_RMII1_TXD0/_GPI00_28	15B	IO	3.3 V	Available on the Expansion Board only when the logic decoder enables the WiFi interface
X1A13	X_RMII1_TXD1/_GPIO0_21	17B	IO	3.3 V	Available on the Expansion Board only when the logic decoder enables the WiFi interface
X1A18	X_RMII1_REFCLK/_GPI00_29	18B	10	3.3 V	Available on the Expansion Board only when the logic decoder enables the WiFi interface
X1B6	X_MII1_RCTL/_GPI03_4	19B	10	3.3 V	Available on the Expansion Board only when the logic decoder enables the WiFi interface

 Table 66:
 GPIO Expansion Board GPIO Signal Map

15.4 GPIO Expansion Board GPMC Signals

SOM Pin #	Signal	GPIO Expansion Board Pin	Туре	Signal Level	Description
X1A23	X_GPMC_AD0	3A	I0	3.3 V	Address / Data 0
X1A16	X_GPMC_AD1	2A	I0	3.3 V	Address / Data 1
X1A24	X_GPMC_AD2	5A	I0	3.3 V	Address / Data 2
X1A28	X_GPMC_AD3	6A	I0	3.3 V	Address / Data 3
X1A25	X_GPMC_AD4	8A	I0	3.3 V	Address / Data 4
X1A26	X_GPMC_AD5	9A	I0	3.3 V	Address / Data 5
X1A29	X_GPMC_AD6	11A	I0	3.3 V	Address / Data 6
X1A30	X_GPMC_AD7	12A	I0	3.3 V	Address / Data 7
X1A33	X_GPMC_ADVn_ALE	14A	I0	3.3 V	Address Latch Enable
X1A34	X_GPMC_BEOn_CLE	15A	I0	3.3 V	Byte 0 Enable
X1B21	X_GPMC_CSOn	17A	I0	3.3 V	Chip select 0
X1B22	X_GPMC_OEn_REn	18A	I0	3.3 V	Output enable / Read enable
X1B17	X_GPMC_WEn	19 <mark>A</mark>	I0	3.3 V	Write enable

The GPMC signals on the GPIO Expansion Board are shown in *Table 67*.

 Table 67:
 GPIO Expansion Board GPMC Signal Map

15.5 GPIO Expansion Board Power Signals

The power signals on the GPIO Expansion Board are shown in *Table 68*.

phyCORE Pin #	CB Signal	GPIO Expansion Board Pin	GPIO Expansion Board Signal
X3B6	VAUX2_3P3V	47C, 48C, 47D, 48D	VCCI01
-	VCC_1V2	49C, 50C, 51, 49D, 50D, 51D	VCC4
X3A3	VDIG1_1P8V	52C, 53C, 54C, 52C, 53D, 54D	VCC4
-	VCC_3V3	55C, 56C, 57C, 55D, 56D, 57D	VCC2
-	VCC_5V0	58C, 59C, 60, 58D, 59D, 60D	VCC1

 Table 68:
 GPIO Expansion Board Power Signal Map

15.6 GPIO Expansion Board Serial Interfaces

The serial interfaces on the GPIO Expansion Board are shown in *Table 69*.

SOM Pin #	Signal	GPIO Expansion Board Pin	Туре	Signal Level	Description
X3B21	X_USB1_DRVVBUS	5C	OUT	3.3 V	USB1 VBUS control
X3B24	X_USB1_CE	6C	0UT	3.3 V	USB1 charger enable
X3B22	X_USB1_VBUS	7C	I0	5 V	USB1 bus voltage
X3B42	X_USB0_DRVVBUS	9C	OUT	3.3 V	USB0 VBUS control
X3B44	X_USB0_CE	10C	0UT	3.3 V	USB0 charger enable
X3A19	X_I2C0_SCL	35C	0UT	3.3 V	I2C0 clock
X3A20	X_I2CO_SDA	36C	I0	3.3 V	I2C0 data
X3A15	X_SPI0_SCLK	38C	0UT	3.3 V	SPI0 clock
X3A17	X_SPI0_CS0	39C	0UT	3.3 V	SPIO chip select 0
X3A34	X_SPI0_D0	40C	IN	3.3 V	SPIO Master-In-Slave-Out (MISO) data

Table 69:GPIO Expansion Board Serial Interfaces Signal Map

SOM Pin #	Signal	GPIO Expansion Board Pin	Туре	Signal Level	Description
X3A35	X_SPIO_D1	41C	0UT	3.3 V	SPI0 Master-Out-Slave-In (MOSI) data
X3A24	X_DCANO_RX	26D	IN	3.3 V	DCAN0 receive data
X3A25	X_DCANO_TX	27D	0UT	3.3 V	DCAN0 transmit data
X1A9	X_UART3_TX	29D	0UT	3.3 V	UART3 transmit data
X1A8	X_UART3_RX	30D	IN	3.3 V	UART3 receive data
X3B60	X_UART2_TX	32D	0UT	3.3 V	UART2 transmit data
X3A60	X_UART2_RX	33D	IN	3.3 V	UART2 receive data
X3B8	X_UART1_CTS	35D	IN	3.3 V	UART1 clear to send
X3B9	X_UART1_RTS	36D	0UT	3.3 V	UART1 request to send
X3B10	X_UART1_TXD/P_UART0_TXD	37D	0UT	3.3 V	UART1 transmit data
X3B11	X_UART1_RXD/P_UART0_RXD	38D	IN	3.3 V	UART1 receive data
X3A32	X_UARTO_TXD	40D	OUT	3.3 V	UARTO transmit data
X3A33	X_UARTO_RXD	41D	IN	3.3 V	UARTO receive data
X1B3	X_MDIO_CLK	2B	0UT	3.3 V	MDIO clock
X1B2	X_MDIO_DATA	3B	I0	3.3 V	MDIO data

PCM-953/ phyCORE-AM335x Carrier Board

 Table 69:
 GPIO Expansion Board Serial Interfaces Signal Map (cont.)

15.7 Signals not Connected to GPIO Expansion Board

Some of the AM335x SOM signals do not connect to the GPIO Expansion Connector for signal integrity reasons. *Table 70* below lists the signal groups which are not routed to the GPIO Expansion Connector. It also provides references to where these signals are located on the Carrier Board and the chapter for the interface in which each signal is used.

Signal Group	Routes through	Routes to	See Section
EtherCATO	U6 bus switch	U33 EtherCAT0 PHY	14.4.4
EtherCAT1	U18 bus switch	U34 EtherCAT1 PHY	14.4.4
Ethernet1	direct connection	X12 Ethernet1 connector	14.4.3.1
Ethernet2	U16 bus switch	U14 Ethernet2 PHY	14.4.3.2
JTAG	direct connection	X21 pin header	14.4.11
LCD	U4 bus switch	X40 pin header	14.4.12
MCASPO	resistors	U20 audio codec	14.4.7
MCASP1	U9 bus switch	X27 header for WiFi module	14.4.15
ММСО	resistors	X20 SD / MMC connector	14.4.13
MMC2	U9 bus switch	X27 header for WiFi module	14.4.13
USB0 data	D16	U7 USB0 connector	14.4.8.1
USBO ID	JP12	U7 USB0 connector	14.4.8.1
USB1 data	D17	U8 USB1 connector	14.4.8.2
USB1 ID	JP11	U8 USB1 connector	14.4.8.2

 Table 70:
 AM335x SOM Signals not routed to GPIO Expansion Connector X5

16 Revision History

Date	Version Number	Changes Made
Juno 1/ 2012	Hardware Manual DCM OF1	Preliminary documentation. Describes the phyCORE-AM335x
June 14, 2012 H	Haluwale Mallual PCM-051	with phyCORE-AM335x Carrier Board.
November 26, 2012	L-771e_1	Updated for Version 2 of the SOM and CB
November 13, 2018	L-771e.A2	Updated for Version 4 of the SOM and CB
March 18 th , 2020	L-771e.A3	Corrected Jumper Tables

Index

Block Diagram	4
CAN 4	1
Debug Interface 4	6
Display	8
Parallel 4	8
Touch Screen Controller	9
FMC	(V
Fthernet 3	6
Fthornot1 3	7
Fthornot 2	0
External Battony 2	6
External Dattery 2	.ບ ວ
CDIO Europeien Deard	2
Aralag Signala	2
	3
Control Signals	3
GPIO Signals	4
GPMC Signals	5
Power Signals 9	5
Serial Interfaces9	5
Unconnected Signals 9	6
GPIOs 4	4
Analog Inputs 4	4
I ² C	0
J2	1
J3	3
J4	2
J9	2
Jumpers	8
McASP	2
nhvCORF Bus Decoder 6	6
nhv(ORE Carrier Board	Ŭ
Switches 5	a
	0
ΓΔΝ 7	Q Q
Components 6	0
Connectors	0
Dianlay	0
DISPLAY	4
EtherLAI	5
Ethernet	2
Features	6
I ² C	1
JTAG 8	3
Jumpers 6	2
LEDs 6	1
Peripherals 5	7

U7	. 30
UART	. 35
USB OTG	. 36
X1	. 68
X10	. 75
X11	. 75
X12	. 73
X13	. 78
X14	. 90
X15	. 90
X16	. 90
X17	. 90
X18	. 77

X19	76
X2	46, 68
X20	
X21	83
X27	91
Х3	71
X31	
X4	
X40	
Х5	82
Х7	79
Х8	
Х9	74

Document: Document number:	phyCORE [®] -AM335x L-771e.A3	
How would you imp	rove this manual?	
Did you find any mis	stakes in this manual?	page
Submitted by: Customer number:		
Name:		
Company:		
Address:		
Return to: PHYI Post D-55	TEC Messtechnik GmbH fach 100403 5135 Mainz, Germany	
Fax	: +49 (6131) 9221-33	

Published by